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Working memory performance is tied to stimulus
complexity
Roland Pusch 1,8✉, Julian Packheiser1,2,8, Amir Hossein Azizi3, Celil Semih Sevincik1, Jonas Rose4, Sen Cheng5,

Maik C. Stüttgen 6 & Onur Güntürkün1,7

Working memory is the cognitive capability to maintain and process information over short

periods. Behavioral and computational studies have shown that visual information is asso-

ciated with working memory performance. However, the underlying neural correlates remain

unknown. To identify how visual information affects working memory performance, we

conducted behavioral experiments in pigeons (Columba livia) and single unit recordings in the

avian prefrontal analog, the nidopallium caudolaterale (NCL). Complex pictures featuring

luminance, spatial and color information, were associated with higher working memory

performance compared to uniform gray pictures in conjunction with distinct neural coding

patterns. For complex pictures, we found a multiplexed neuronal code displaying visual and

value-related features that switched to a representation of the upcoming choice during a

delay period. When processing gray stimuli, NCL neurons did not multiplex and exclusively

represented the choice already during stimulus presentation and throughout the delay period.

The prolonged representation possibly resulted in a decay of the memory trace ultimately

leading to a decrease in performance. In conclusion, we found that high stimulus complexity

is associated with neuronal multiplexing of the working memory representation possibly

allowing a facilitated read-out of the neural code resulting in enhancement of working

memory performance.
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Working memory, the ability to maintain and process
information in the absence of sensory stimuli, is cru-
cial for many cognitive functions like abstract rea-

soning, problem solving, goal-directed behavior, decision making,
and cognitive control1. This important role in cognition is further
illustrated by the fact that the capacity of working memory is
often taken as proxy for overall cognitive capacity2,3. A large body
of research has demonstrated that especially the prefrontal cortex
(PFC) is involved in the active maintenance of sensory
input4–6, for reviews see refs. 7,8. Most studies investigating the
neural basis of working memory focused on the specific effects of
increased working memory load9,10, for review see ref. 11, influ-
ence of reward associations12,13 or the role of attention14,15.
Surprisingly, the stimulus that is used in a working memory
paradigm has received comparatively little attention in
neuroscience.

Across a series of behavioral studies in humans, preliminary
evidence has been collected that the stimulus material impacts
working memory performance. In a behavioral study, Gegen-
furtner and Rieger16 investigated the impact of color on encoding
and retrieval processes. They found that recognition and recall of
colored stimuli was faster and more successful than recognition of
black and white images. Bae et al.17,18 investigated the precision
of working memory in delayed estimation tasks using plain colors
as stimuli. In these experiments, a target color had to be
remembered throughout a retention interval. Subsequently, the
target color had to be recalled and estimated on a continuous
color wheel. The deviation of the chosen color from the presented
stimulus indicated the memory precision for a specific hue.
Importantly, the authors found an inhomogeneous response
distribution where specific colors were maintained more precisely
than others, even when remembering a single stimulus. These
results were later replicated in humans and monkeys and mod-
elled as drift towards adaptive attractors. According to these
models, neural representations in working memory are more
resistant to noise when they are stored in stable states associated
with, for example, primary colors19. Similar findings were made
by Pratte et al.20 using the orientations of gratings as stimuli. As
for color vision, the authors found an inhomogeneous distribu-
tion for the recall of orientations with a superior memory per-
formance for cardinal orientations. The abovementioned
experimental and modeling work indicates the influence of sti-
mulus material on memory performance, a notion that is further
illustrated by the interaction between working memory and
perception21.

While these recent behavioral and modeling studies have
demonstrated that the stimulus material indeed affects working
memory, the possible underlying neural computations remain
elusive. To provide insights into these processes, we investigated
the impact of stimulus complexity on working memory perfor-
mance in three behavioral experiments. As stimuli of low com-
plexity, we used uniform gray pictures that only varied along one
dimension: their luminance. Complex stimuli were pictures that
varied along several stimulus dimensions. These pictures were
composites of elemental features providing luminance, spatial and
color information. Varying complexity, defined as the “amount of
visual detail” by Alvarez and Cavanagh22, of the stimulus material
has been shown to impact working memory performance in
human subjects22–24. Here, we chose pigeons as a model organ-
ism for the present study due to their excellent color vision25,
their ability to quickly learn and memorize visual stimuli26, and
to categorize pictures on par with monkeys27. Further, all
investigated functional parameters of working memory have been
suggested to be comparable between birds and mammals e.g.
refs. 27,28. Across all behavioral experiments, we consistently
found higher working memory performance rates for high

compared to low stimulus complexity. In a final experiment, we
complemented these behavioral findings with single-unit
recordings from the nidopallium caudolaterale (NCL). This
structure has been suggested to be the avian analogue to the
mammalian PFC based on neurochemical results29, connectivity
patterns e.g. ref. 30 and its role in executive functions e.g. ref. 31,
especially working memory32–34. Here, we found a systemic dif-
ference in the neural representation of choice timing and
dimensionality between the two stimulus classes.

Results
Behavioral experiments reveal effects of stimulus complexity
on working memory performance. In three behavioral experi-
ments, we investigated the effect of stimulus complexity on
working memory by comparing performance accuracy with and
without a delay in a paired association task. All trials in the
experiments followed the same structure (see Fig. 1a and Methods
Behavioral paradigm for details): After a center peck to initialize
the trial, a sample phase of 1s duration began, during which a
single stimulus was presented on the center response-key. In the
non-delayed condition, the choice period started after another
peck onto a confirmation key following the sample phase. In the
delayed condition, a 3 s delay phase was imposed between the
sample and the choice phase. During the choice phase, the ani-
mals had up to 3 s to make a choice either to peck on the left or
on the right response key (counterbalanced across animals). A
correct choice resulted in a 2 s food presentation whereas an
incorrect choice resulted in a mild punishment with a 2 s lights
out condition in the experimental chamber. In each experiment,
eight different images were presented as stimuli. Four ‘complex’
stimuli consisted of multiple colors as well as spatial features and
four ‘simple’ stimuli consisted of a single grayscale value of dif-
ferent luminance (Fig. 1b, left panel). We will use the terminology
complex vs. simple throughout the manuscript to refer to the two
stimulus classes (for more detail on stimulus characterization see
Methods Stimuli).

Experiment 1: The first experiment had two aims: First, we
wanted to establish if the animals could discriminate equally well
between complex and simple stimuli. For this purpose, we
analyzed the non-delayed condition of our task. Our second aim
was to explore the effects of stimulus-complexity on working
memory performance. For this purpose, we compared the results
from the non-delayed with the delayed condition of our task. In
experiment 1, the animals associated each stimulus with either the
left or the right response key. All stimuli were rewarded in 100%
of the cases if the correct choice was made (Fig. 1b, Experiment 1).

89 behavioral sessions from 11 animals were analyzed (see
Supplementary Table 1 for a detailed description). To identify
whether performance was affected by stimulus complexity, we
compared the number of correct responses between complex and
simple stimuli in the non-delayed condition using a linear mixed
model. The model contained “delay” (yes/no as levels) and “class”
(levels: complex stimuli, simple stimuli) as fixed effects and the
individual animal as a random effect to account for the
hierarchical nature of the data. There was a significant interaction
effect between the factors “class” and “delay” (β=−0.07, 95% CI
= [−0.09 to −0.04], SE= 0.01, p < 0.001). We found no
significant difference between the performance for complex
stimuli (93.5% correct responses) and the performance for simple
stimuli (92.4% correct responses, t= 1.37, p= 0.173, d= 0.27,
95% CI = [−0.12 to 0.67]) in the “no delay” condition indicating
that complex and simple stimuli could be discriminated equally
well if no working memory component was present in the task
(Fig. 2a). In the “delay” condition, however, we found a much
higher performance for complex stimuli (91.4% correct
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responses) compared to simple stimuli (83.4% correct responses,
t= 8.61, p < 0.001, d= 1.95, 95% CI = [1.46–2.44]). Resolving the
interaction for the factor “delay” showed a significant reduction
for both complex (t= 2.62, p= 0.001, d= 0.61, 95% CI =
[0.15–1.08]) and simple stimuli performance (t= 9.80, p < 0.001,
d= 2.29, 95% CI = [1.77–2.81]).

Of important note for a later experiment is that there was a
difference in performance between simple stimuli that were
separated by low and high contrast increments in both
experimental conditions, i.e. with and without a delay. Low
contrast simple stimuli received fewer correct responses com-
pared to stimuli separated by higher contrast differences (high
contrast = 90.6% correct responses; low contrast = 86.4% correct
responses, t= 4.71, p < 0.001, d= 0.71, 95% CI = [0.41–1.01]).
However, the performance decline for both high and low contrast
stimuli was uniform across the delay indicating that this effect
was likely working memory independent (high contrast differ-
ence: t= 7.74, p < 0.001, d= 1.74, 95% CI = [1.28–2.20]; low
contrast differences: t= 8.20, p < 0.001, d= 1.84, 95% CI =
[1.38–2.30], see Supplementary Table 2 for descriptive data).
Results for the individual stimuli are presented in Supplementary
Fig. 1.

Experiment 2: In the first experiment, we found that complex
stimuli could be maintained more accurately over time compared
to simple stimuli. However, the task in experiment 1 demanded a
spatially fixed choice to the left or to the right depending on the
stimulus identity. To control for spatial memory effects or motor
preparation strategies, e.g. preemptively locating oneself closer to
the respective choice target, we repeated the experiment, but
replaced the spatially fixed response associations with randomly
presented color associations (choice A = yellow, choice B = blue,
counterbalanced across animals; Fig. 1b, Experiment 2). Thus, the
target location for the upcoming choice could no longer be
predicted by the animals.

39 behavioral sessions from eight animals were analyzed for
experiment 2 (see Supplementary Table 1 for a detailed
description). As in experiment 1, we found differential effects of

the delay depending on the stimulus class (interaction of
class*delay: β=−0.08, 95% CI = [−0.12 to −0.04], SE= 0.02,
p < 0.001, Fig. 2b). We did not find a significant difference in the
“no delay” condition between the complex (94.5% correct
responses) and simple stimuli (94.2% correct responses,
t= 0.27, p= 0.790, d= 0.08, 95% CI = [−0.53 to 0.70]). For
the “delay” condition, however, we found a significant perfor-
mance difference between both stimulus classes (complex: 93.0%
correct responses; simple: 84.3% correct responses, t= 5.84,
p < 0.001, d= 1.95, 95% CI = [1.21–2.69]). Identically to
experiment 1, we again resolved the interaction for the factor
“delay”. We found no significant reduction in performance for
complex (t= 1.89, p= 0.062, d= 0.63, 95% CI = [−0.04 to 1.31])
but a significant reduction for simple stimuli (t= 7.46, p < 0.001,
d= 2.50, 95% CI = [1.71–3.82]). These findings strongly
resemble the findings from the first experiment and show that
complex stimuli were maintained more accurately than simple
stimuli. Importantly, this effect could not be explained by spatial
memory effects or motor preparation strategies (see Supplemen-
tary Table 3 for descriptive data). Results for the individual
stimuli are presented in Supplementary Fig. 2.

Experiment 3: In experiment 1 and in experiment 2, we found
that simple stimuli separated by low contrast differences
received fewer correct responses compared to simple stimuli
separated by higher contrast differences. This effect could be
purely rooted in perceptual differences between the simple
stimuli or concomitantly by the resulting reward differences.
Overall animals received less food when confronted with low
compared to high contrast stimuli resulting in different reward
net outcomes. To disentangle perceptual and reward involve-
ment as the driving force of the decline in choice behavior, we
modulated the reward contingencies in experiment 3: One pair
of complex stimuli was subsequently associated with a high
reward probability (90%), while the other pair of complex
stimuli was associated with a low probability (30%, counter-
balanced across animals). The clear divergence in reward
probability was chosen to achieve a pronounced difference in
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the overall net outcome among the complex stimuli. Reward
probabilities for the simple stimuli were kept at identical rates of
50% to enhance the effect of net outcome difference via reward
probability and to directly compare the discrimination difficulty
(Fig. 1b, Experiment 3).

104 behavioral sessions from 17 animals were analyzed for
experiment 3 (see Supplementary Table 1 for a detailed
description). Reiterating the effects in experiment 1 and 2, we
found a differential effect of the introduction of the delay across
the two stimulus classes (interaction of class*delay: β=−0.07,
95% CI = [−0.10 to −0.04], SE= 0.01, p < 0.001, Fig. 2c). Even
though we modulated reward probabilities of the complex stimuli,
we again found no difference between complex (92.4% correct
responses) and simple stimuli (91.2% correct responses) without a
delay (t= 0.97, p= 0.335, d= 0.25, 95% CI = [−0.26 to 0.75]).
As for the first two experiments, introducing a delay to the
experimental conditions revealed a strong performance difference
between the two stimulus classes (complex: 91.7% correct
responses; simple: 83.2% correct responses, t= 10.64, p < 0.001,
d= 1.76, 95% CI = [1.39–2.13]). As in experiment 2, resolving

the interaction for the factor “delay” showed no significant
reduction for complex (t= 0.39, p= 0.700, d= 0.11, 95% CI =
[−0.67 to 0.46]) but a significant reduction for simple stimuli in
performance (t= 4.99, p < 0.001, d= 1.41, 95% CI =
[0.82–1.99]). Results for the individual stimuli are presented in
Supplementary Fig. 3.

In experiment 3, we found attenuated performance levels when
complex stimuli were associated with low reward probabilities
compared to complex stimuli associated with high reward
probabilities already when no delay was imposed. Here, high
reward stimuli received more correct responses compared to low
reward stimuli (high reward = 96.1% correct responses; low
reward = 88.8% correct responses, t= 11.37, p < 0.001, d= 1.58,
95% CI = [1.28–1.87], see Supplementary Table 4 for all
descriptive data). These results suggest that reward probabilities
affected the general ability to associate stimuli with the adequate
choice clearly influencing the choice behavior. However, different
reward levels between the complex and simple stimulus sets do
not account for the difference in the effect of delay performance
between these two sets.

d

- 12

- 10

- 8

- 6

- 4

- 2

0

2

Δ
 P

er
fo

rm
an

ce
 [%

]

1
2

3

1
2 3

Experiment 3

Simple - Complex

C
or

re
ct

 re
sp

on
se

s 
[%

]

c

75

80

85

90

95

100

70

65

b
Experiment 2Experiment 1

100% reward (left/right) 100% reward (yellow/blue)a

Simple - Complex Diff. reward contingencies (left/right)

Complex

Simple

C
or

re
ct

 re
sp

on
se

s 
[%

]

75

80

85

90

70

65

95

100

C
or

re
ct

 re
sp

on
se

s 
[%

]

75

80

85

90

70

65

95

100

***

*** ***

DelayedNon-Delayed DelayedNon-Delayed

Complex

Simple

Complex

Simple

DelayedNon-Delayed DelayedNon-Delayed

Fig. 2 Behavioral performance for the experiments 1–3. a Experiment 1: In the non-delayed condition, no performance difference was found between
complex (blue) and simple stimuli (yellow) indicating that both stimulus classes could be successfully associated with their corresponding choice if no
working memory component was present. Following the introduction of the delay, a much larger performance drop was observed for simple compared to
complex stimuli. Dots represent individual sessions in the respective experimental conditions. b Experiment 2: Dissociating the upcoming choice from a
fixed spatial location had no effects on the result pattern that was observed in experiment 1. c Experiment 3: As in experiment 1 and 2, performance
decreases following the introduction of the delay were much more pronounced for simple compared to complex stimuli despite changed reward
contingencies for complex stimuli. d Percentage difference (Δ) of the performance between the delayed vs. the non-delayed condition for complex and
simple stimuli. The numbers next to the circles indicate the performance difference in the specific experiment. ***p < 0.001. Error bars represent the 95%
confidence interval.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05486-7

4 COMMUNICATIONS BIOLOGY |          (2023) 6:1119 | https://doi.org/10.1038/s42003-023-05486-7 | www.nature.com/commsbio

www.nature.com/commsbio


In conclusion, we consistently showed in three behavioral
experiments that stimulus complexity had a strong impact on
working memory performance. For stimuli comprising lumi-
nance, spatial, and color information, the introduction of a
memory delay only had small, if any effects on maintenance. If
simple stimuli, comprising only luminance information, were
presented, performance was significantly diminished following a
memory delay. Figure 2d provides an overview across all three
experiments.

Neural recordings in the NCL reveal coding differences for
simple and complex stimuli. Next, we wanted to investigate
neural representations that correlate with the differences in
working memory performance that we observed in our behavioral
experiments. To this end, we recorded single neuron activity in
the NCL while the animals performed the delayed condition of
experiment 3 as this condition comprised all relevant manipula-
tions that affect the choice behavior, i.e. working memory for
stimuli of different complexity, as well as the manipulation of
value. 104 neurons from 34 behavioral sessions of three pigeons
(see Supplementary Table 1 for a detailed description) were
recorded from the NCL (for histological electrode track recon-
struction see Supplementary Fig. 4). Performance rates were
highly comparable between the recording sessions and the purely
behavioral sessions from the delayed condition of experiment 3
(see Supplementary Fig. 5).

Different neural activation pattern during a visual working
memory task. At first, we were interested in the neural repre-
sentation of task parameters. Particularly, we investigated if there
were systematic differences between the two stimulus classes
during working memory. The stimulus classes were analyzed
separately as we identified major performance differences
between them in the preceding behavioral experiments. We
analyzed trials with complex and simple stimuli independently
using a sliding window ANOVA (250 ms bin size) with the
factors “response” (two levels: left or right) and “value” (levels
high vs. low reward probability for complex stimuli or high vs.
low contrast for simple stimuli). For each factor, we computed
the effect size ηp² in each given bin of the trial which reflects the
percent of explained variance (PEV; see Fig. 3a for illustration of
these factors). We classified each neuron into four categories
based on the results of the ANOVA and the ensuing effect sizes
(see Methods Task related activity – Cell classification for
details):

1. Choice-related activity: A difference in the neural response
between left and right choices, resulting in a main effect of
factor “response” (ηp² > 0.03 in two consecutive bins).

2. Value-related activity: A difference in the neural response
between high and low rewarded stimuli or high and low
contrast stimuli, resulting in a main effect of factor “value”
(ηp² > 0.03 in two consecutive bins).

3. Stimulus-related activity: If a neural response was related
to one specific stimulus, an idiosyncratic result of the
ANOVA was observed. Only in this specific case, value,
choice and interaction effects occurred at the same time
(ηp² > 0.03 in two consecutive bins for the factors “value”,
“response” and their “interaction” simultaneously)35.

4. Interaction activity: This type of representation arose
whenever a single neuron represented more than one single
stimulus or when value-related activity switched to a
choice-based pattern within the very same cell, resulting in
an interaction between the factors “value” and “response”
(ηp² > 0.03 in two consecutive bins).

We quantified the difference in effect size between stimulus
classes during the sample and delay phase. This was performed
separately for the different task periods, i.e. the sample phase, 1st
second of the delay, 2nd second of the delay and 3rd second of
the delay.

Choice-related activity. The first activity type we investigated was
choice-related activity—a neural response associated with the side
of the animals’ response. To verify that this activity was indeed
associated with the animal´s subsequent decision, we compared
correct and incorrect trials in a supplementary analysis (Supple-
mentary Figs. 6, 7). An example neuron demonstrating choice-
related activity is depicted in Fig. 3b (raster) and 3c (spike density
function; SDF). For simple stimuli, this neuron did not show any
relevant activity changes during the sample phase whereas it
exhibited stimulus-related activity for complex stimuli. During
the delay phase, this neuron differentiated between left and right
decisions both for complex and simple stimuli.

The results for choice-related activity of each individual neuron
are presented in Fig. 3d (left: complex stimuli, right: simple
stimuli). Choice-related activity in the NCL was found exten-
sively, but its extent differed notably between the stimulus classes.
Comparing the average effect of choice-related activity between
both stimulus classes during the sample phase revealed
significantly less activity for complex compared to simple stimuli
(mean effect complex = 0.001, mean effect simple = 0.008;
t= 2.59, p= 0.010, d= 0.36, 95% CI = [0.08–0.64]). Across the
delay phase, effect sizes of choice-related activity did not differ
between the different stimulus sets at any point in time (all
ps > 0.05).

Value-related activity. The second aspect captured by our ana-
lysis was value-related activity, i.e. activity differences between
high and low reward complex stimuli or differences between high
and low contrast simple stimuli. An example neuron representing
value differences for complex stimuli is shown in Fig. 4b (raster
plot) and 4c (SDF). This neuron differentiated significantly
between stimuli of high and low reward probability during the
sample phase (value effect size is highlighted in red; Fig. 4c).

The results for value-related activity of each neuron are
presented in Fig. 4d. Value coding was most prevalent during the
sample phase and could exclusively be found for complex stimuli.
Comparing the average effect of value-related activity between
both stimulus classes during the sample phase revealed
significantly more value-related activity for complex compared
to simple stimuli (mean effect complex = 0.005, mean effect
simple <0.001, t= 2.22, p= 0.028, d= 0.31, 95% CI =
[0.03–0.58]). This was also true for the first second of the delay
phase (mean effect complex = 0.003, mean effect simple < 0.001;
t= 2.56, p= 0.011, d= 0.35, 95% CI = [0.08–0.63]). Value-
related activity was absent further on during the task (see Fig. 4d
and Table 1). Thus, no differences in value-related activity were
found during these task periods.

Stimulus-related activity. The third aspect we investigated was
stimulus-related activity, i.e. whenever a neuron represented one
stimulus in particular. An example neuron of this kind can be
found in Fig. 5b (raster plot) and 5c (SDF). This neuron was
selectively activated during the presentation of one particular
complex stimulus exclusively during the sample phase (stimulus
effect size is highlighted in yellow; Fig. 5c).

The results for stimulus-related activity of each recorded
neuron are presented in Fig. 5d (left: complex stimuli, right:
simple stimuli). Stimulus-related activity was most prevalent
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during the sample phase and could almost exclusively be found
for complex stimuli. We then compared the average effect of
stimulus-related activity between both stimulus classes during the
sample phase. Here, there was stronger stimulus-related activity
for complex compared to simple stimuli (mean effect complex =
0.009, mean effect simple = 0.001; t= 3.52, p= 0.005, d= 0.49,
95% CI = [0.21–0.77]). During the delay phase, stimulus-related

activity was virtually absent for both stimulus classes, conse-
quently there were no differences in stimulus-related activity
between the classes.

We were also interested whether the number of stimulus-
representing neurons was driven by reward contingencies, i.e. if
neurons represented stimuli associated with high reward more
often. Of the 20 cells modulated by the complex stimuli, 12 cells
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Fig. 3 Example neuron and population response for choice-related activity in the NCL. a The rationale of the ANOVA for the electrophysiological data.
Stimuli were either associated with a left (dashed lines) or right choice (solid lines, factor choice) or with the higher or lower net outcome due to different
reward probabilities in the complex stimulus class (left panel) or discrepancies in contrast for the simple stimulus class (right panel). The colors in the
figure represent the different activity patterns of NCL neurons (stimulus = yellow, value = red, choice = blue). b Raster plot of an example neuron
demonstrating choice-related activity. For both complex and simple stimuli, this neuron differentiated between stimuli associated with a left and right
choice during the delay phase. For complex stimuli, the neuron furthermore showed stimulus-related activity during the sample phase (left). c Spike density
function of the example neuron shown in b. The numbers of the line plots correspond with one of the eight experimental stimuli. The PEV by the relevant
coding type is presented behind the SDF as shaded area in the respective color of the activity pattern (stimulus = yellow, value = red, choice = blue; cf. a).
Corresponding values are scaled on the secondary axis depicted in gray. d Population response for choice-related activity of all individual neurons for trials
in which complex (left panel) and simple stimuli (right panel) were presented. Cells that did not exhibit any activity according to the ANOVA during any
phase (n= 22 cells) were excluded from the plot. Only above threshold firing (ηp² > 0.03) is shown.
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coded for the high rewarded stimuli whereas eight cells were
active in the presence of low rewarded stimuli. No significant
difference could be detected between them (χ²(1)= 0.8, p > 0.250)
indicating that reward probability did not drive stimulus-related
activity in the NCL population.

The interaction of value and choice. The fourth aspect we
analyzed was the interaction between the factors value and choice.
This type of representations arose whenever a single neuron
represented more than one single stimulus or when value-related

activity switched to a choice-based pattern within the very same
cell. An example neuron representing two stimuli simultaneously
resulting in a significant interaction effect is shown in Supple-
mentary Fig. 8b (raster) and 8c (SDF). Interaction effects were
most prevalent during the sample phase and could almost
exclusively be found for complex stimuli. Comparing the average
effect of interactions of value and choice between both stimulus
classes during the sample phase revealed stronger activity in the
interaction category for complex compared to simple stimuli
(mean effect complex = 0.002, mean effect simple < 0.001;
t= 2.97, p= 0.003, d= 0.41, 95% CI = [0.14–0.69]). This was
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also true for the first second of the delay phase (mean effect
complex = 0.002, mean effect simple < 0.001; t= 2.81, p= 0.005,
d= 0.39, 95% CI = [0.11–0.67]).

Summarizing comparison of neural activation pattern for
simple and complex stimuli. Table 1 summarizes the above
mentioned cell categories (i.e. choice-, value-, stimulus-, and
interaction activity) across the experimental phases (i.e. sample
phase and delay). To provide a comparison of activity patterns
during the sample phase (1 s) and the delay phase (3 s), we
divided the delay phase into three time windows of 1 s duration.

To identify if the number of classified cells were above what was
to be expected by chance, we randomly permuted spike counts to
determine how often neurons were classified into each category
based on chance alone (see Methods Chance-based quantity of
active cells per category for detail, Supplementary Table 5 for
results). Finally, we used Fisher’s exact test to identify whether the
classification result was significantly different from the chance-
based prediction. Since for each stimulus class 20 individual
phases had to be tested (phases*activity type; cf. Table 1), we used
a Bonferroni corrected threshold of p < 0.0025. Note that indivi-
dual neurons could potentially be classified into multiple cate-
gories, as the categories were not mutually exclusive.
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Fig. 5 Example neuron and population response for stimulus-related activity in the NCL. a The rationale of the ANOVA as described in Fig. 3. b Raster
plot of a stimulus representing example neuron. This neuron specifically responded to one of the high rewarded complex stimuli during the sample phase
(left) and to no stimulus from the simple stimuli (right). c Spike density function (SDF) of the example neuron shown in b. The percent explained variance
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During the sample phase, we found 7.69% choice coding
neurons for complex stimuli. The number of cells was not
significantly different from chance level. However, 12.5% of the
recorded neurons showed value-related activity in response to the
complex stimuli. In addition, 19.23% of the recorded neurons
were responsive to one specific complex stimulus and 12.5% of
the recorded cells displayed interaction activity between the
factors choice and value. All of these responses were significantly
different from chance (Table 1). The presentation of simple
stimuli during the sample phase resulted in an opposite activity
pattern: 20.19% of the recorded neurons displayed choice-related
activity. An amount of cells that was clearly above chance.
However, the NCL population did not demonstrate significant
numbers of neurons representing value- (0%) or stimulus-related
(0.96%) activity nor above chance interaction activity between the
factors choice and value (0.96%).

Throughout the delay phase, we found a significant fraction of
neurons in the NCL population that represented the upcoming
choice for complex stimuli (1st second: 32.69%; 2nd second:
23.08%; 3rd second: 23.08%). Further, 14.42% of the recorded
neurons showed a significant interaction activity between the
factors choice and value for complex stimuli in the first second of
the delay period. For simple stimuli, choice-related activity was
displayed throughout the delay period exclusively (1st second:
34.62%; 2nd second: 27.88%; 3rd second: 27.88%).

Thus, when analyzing neuronal activation pattern during
different phases within a trial, a clear distinction between simple
and complex stimuli becomes apparent especially during the
sample period: While the presentation of complex stimuli resulted
in stimulus representation, value representation and the interac-
tion of both response types, solely choice activity was found when
simple stimuli were presented.

Temporal dynamics of neural activation schemes. So far, our
analysis was based on the population response for single task
parameters such as choice or value but it did not investigate if
individual neurons dynamically represent different task para-
meters, a phenomenon known as neural multiplexing36,37. To
investigate whether NCL neurons were encoding only one task
aspect (i.e. solely choice, value, stimulus, or interaction activity)
or were engaged in the representation of multiple aspects at
different stages of the task, we tracked task-related activity pat-
terns of individual neurons over time and categorized them
accordingly.

As evident from the example neurons shown in Figs. 3b/c, 4b/c,
individual neurons were not limited to one type of activation
pattern but employed strong multiplexing resulting in dynamic
changes from the sample to the delay phase when presented with
complex stimuli. For simple stimuli, these neurons exclusively
represented choice-related activity.

Based on the results of the ANOVA, we created four post hoc
categories to classify individual neurons according to their firing
pattern dynamics across the sample and delay phase:

1. Early choice: The upcoming choice was represented already
during the sample phase. No stimulus, value or interaction
activity is observed at any point during the task. An
example neuron is depicted in Fig. 6a1 (raster) and 6a2
(SDF).

2. Late choice: The upcoming choice was represented after the
sample phase had ended. No stimulus, value or interaction
activity is observed at any point during the task. An
example neuron is depicted in Fig. 6b1 (raster) and 6b2
(SDF).

3. Stimulus - No choice: Neurons that demonstrated
stimulus, value or interaction activity, but no choice-
related activity. An example neuron is depicted in Fig. 6c1
(raster) and 6c2 (SDF).

4. Stimulus - Choice: Neurons that demonstrated stimulus,
value or interaction activity initially during the trial and
then dynamically switched to a choice representation later
in the trial. An example neuron is depicted in Fig. 6d1
(raster) and 6d2 (SDF).

The two stimulus classes differed with regard to the number of
“early choice” and “late choice” neurons. Significantly fewer
neurons demonstrated early choice-related activity with complex
than with simple stimuli (complex: six neurons, simple: 21
neurons, χ²(1)= 9.58, p= 0.002). The same was true for “late
choice” representations (complex: 13 neurons, simple: 26
neurons, χ²(1)= 5.33, p= 0.021). Thus, representations of choice
were significantly more prevalent for simple stimuli. Interestingly,
“early choice” neurons demonstrated significantly higher effects
of choice-related activity at the beginning than at the end of the
delay for simple stimuli (t(9)= 8.70, p < 0.001, see Fig. 6a3)
indicating that the strength of the choice-related activity decayed
after an early onset. Activity levels of “late choice” neurons did
not significantly decay throughout the delay (Fig. 6b3).

We then compared the number of active cells for the “stimulus
- no choice” and the “stimulus - choice” category between the two

Table 1 Distribution of active cells per category (choice, value, stimulus, and interaction activity) across the sample and delay
phase for both the complex and simple stimuli.

Stimulus Set Complex Stimuli

Choice Value Stimulus Interaction Cell Total

Sample Phase 8 (7.69%) 13 (12.5%)* 20 (19.23)*** 13 (12.5%)* 48 (46.15%)***
Delay 1st second 34 (32.69%)*** 10 (9.62%) 5 (4.81%) 15 (14.42%)** 39 (37.5%)***
Delay 2nd second 24 (23.08%)*** 4 (3.85%) 2 (1.92%) 5 (4.81%) 33 (31.73%)***
Delay 3rd second 24 (23.08%)*** 3 (2.88%) 2 (1.92%) 1 (0.96%) 30 (28.85%)***

Simple Stimuli
Choice Value Stimulus Interaction Cell Total

Sample Phase 21 (20.19%)*** 0 (0%) 1 (0.96%) 1 (0.96%) 23 (22.12%)***
Delay 1st second 36 (34.62%)*** 0 (0%) 0 (0%) 1 (0.96%) 37 (35.58%)***
Delay 2nd second 29 (27.88%)*** 3 (2.88%) 0 (0%) 3 (2.88%) 34 (32.69%)***
Delay 3rd second 29 (27.88%)*** 4 (3.85%) 1 (0.96%) 2 (1.92%) 33 (31.73%)***

The asterisks indicate if the number of observed neurons is higher than expected by chance (Fisher’s exact test). Please note that the categories are not mutually exclusive as one neuron can for example
exhibit both stimulus coding as well as value coding during the sample phase. For that reason, the cell total is not necessarily equal to the sum of all active neurons. P-value thresholds are indicated by
asterisks and represent the Bonferroni corrected values.
*p < 0.05; **p < 0.01; ***p < 0.001
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stimulus classes. Here, 33 cells demonstrated “stimulus - no
choice” representations when confronted with complex stimuli
compared to four cells when confronted with simple stimuli
(χ²(1)= 9.58, p < 0.001, see Fig. 6c3 for population results).
“Stimulus - choice” neurons were also more prevalent when the
animals were confronted with complex compared to simple
stimuli (complex: 16 neurons, simple: five neurons, χ²(1)= 6.41,
p= 0.011). In contrast to “early choice” neurons, activity levels
did not decay from early to late stages of the delay in neurons
employing such a stimulus-choice representation when complex
stimuli were presented (t(9)= 0.60, p= 0.561, Fig. 6d3).

Overall, NCL neurons show multiplexing by dynamically
switching from stimulus, value or interaction activity to choice-
related activity. However, this coding scheme was exclusively
found when complex stimuli were presented. In this case, the
subsequent choice component was maintained at a stable level
throughout the entire delay period. For simple stimuli, neuronal
multiplexing was entirely absent since neurons did not represent
stimulus, value, or interaction activity at all. Instead, choice-
related activity emerged already during the presentation of simple
stimuli. Population activity of these “early choice” neurons
subsequently degraded over the delay phase.
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Fig. 6 Neuronal coding schemes in the NCL. a The first category comprised neurons that encoded the upcoming decision already during the sample phase
(“early choice”). a1 Raster plot of an example neuron that differentiated between left and right choices during sample and delay phase for the simple stimuli. a2
According SDF and effect sizes of the example neuron. a3 Population average for all neurons demonstrating “early choice” representations for both the simple
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the example neuron. b3 Population average for all neurons demonstrating “late choice” representations for both the simple and complex stimuli. c The third
category comprised neurons that encoded solely task parameters not associated with the upcoming choice, i.e. stimulus, value and/or interaction activity
during either the sample or the delay phase (“stimulus - no choice”). c1 Raster plot of an example neuron that demonstrated stimulus-related activity during
the sample phase for one complex stimulus. c2 According SDF and effect sizes of the example neuron. c3 Population average for all neurons demonstrating
“stimulus - no choice” representations for both the simple and complex stimuli. d The fourth category comprised neurons that initially encoded
representations not associated with the upcoming choice, i.e. stimulus, value and/or interaction activity, but later switched to choice-related activity patterns
(“stimulus - choice”). d1 Raster plot of an example neuron that demonstrated stimulus-related and interaction activity during the sample and early delay phase
for complex stimuli. The neuron then dynamically switched to choice-related activity during the delay phase. d2 According SDF and effect sizes of the example
neuron. d3 Population average for all neurons demonstrating “stimulus - choice” representations for both the simple and complex stimuli.
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Discussion
In the present study, we investigated the effects of stimulus-
complexity on working memory performance using both beha-
vioral and neurophysiological approaches in pigeons. In line with
our hypothesis, complex stimuli that comprised luminance, spa-
tial, and color information could be maintained better in working
memory compared to simple stimuli void of visual features except
for luminance. This distinction was associated with a clear dif-
ference between the neural representations of these stimulus
classes. NCL neurons represented only idiosyncratic features of
complex stimuli such as their value or physical identity during the
sample phase. Only later, during the delay period, the upcoming
choice was represented. Importantly, the representation of dif-
ferent task parameters (e.g. stimulus and choice) occurred within
single neurons illustrating neuronal multiplexing. Simple stimuli,
on the other hand, were never represented in NCL. Instead, we
only recorded signals reflecting the upcoming choice even while
the images were still visible to the animal. Since we exclusively
discovered choice-related activity for simple stimuli, no neuronal
multiplexing could be detected.

The causal involvement of the NCL in working memory tasks
was initially shown with lesion studies in pigeons32,38. Subsequent
electrophysiological recordings in the pigeon NCL during work-
ing memory tasks showed enhanced delay activity, especially in
trials in which a motor response was required and reward was
delivered33,39. In accordance with these studies, we found neu-
ronal representations of value, choice, and their interactions for
complex stimuli. For both stimulus classes, we found responses
during the delay phase that signaled the upcoming choice. Studies
in the NCL of crows further showed stimulus selective activity
during the presentation period. This activity was subsequently
maintained during the delay period31,40. Importantly, in the study
by Veit et al.31, half of the recorded neurons showed a differential
response pattern during the sample and delay phase. Especially
these complex, diverse, and mixed selective responses are in full
agreement with our data (for a further discussion on mixed
selective responses see below). In these studies, only complex
pictures were used as stimuli and thus, the impact of stimulus
complexity has not been investigated with electrophysiological
methods. However, in a behavioral study, the interfering impact
on working memory was shown to be small for simple distractor
stimuli and more severe for complex pictures, hinting towards
differential processing of both stimulus classes41. To system-
atically investigate interfering effects of the different stimulus
classes, an experiment as performed by Wright et al.42 would be
needed. Testing the serial position function of the different sti-
mulus classes under diverse delay conditions would shed further
light on differential encoding and the resulting interference pat-
tern for each stimulus class. Additionally, increasing the number
of items would inform about the working memory capacities for
stimuli of different visual quality.

The idea that stimulus features impact working memory per-
formance is rather recent. Results that some hues are memorized
more precisely than others or that cardinal directions are easier to
memorize than other orientations can probably be explained by
categorization that could depend on stimulus statistics17–19,43.
These findings have usually been conceptualized in the scope of
computational models investigating capacity limits44,45, noise
accumulation46, or discrete memory storage20,47. Importantly, all
these frameworks indicate a clear relation between the identity of
a specific visual stimulus and memory performance that is
grounded in a systematic difference of the stimulus’ neural
representation. Our results support this notion as the enhanced
performance for complex compared to the simple stimuli could
be linked to a differential recruitment of neural populations for
the two stimulus classes. Complex stimuli offered a large number

of idiosyncratic visual features that could have aided in bringing
the working memory representation into a stable state. A
potential explanation how this occurred on the neural level could
relate to different activity schemes depending on the presented
stimulus class: we exclusively found neuronal multiplexing when
complex stimuli were presented. Neural multiplexing refers to a
neuron’s capacity to be activated by multiple different task rele-
vant parameters as opposed to highly specialized neurons48 likely
due to being embedded in diverse neural ensembles. Here, indi-
vidual neurons represented a multitude of task parameters not
only at different points during the trial but also simultaneously
with regards to the interaction between value and choice. Thus,
representations of complex stimuli were of higher dimensionality
in the NCL compared to those of simple stimuli.

High dimensional coding by neurons has been suggested to be
associated with a facilitated read-out by downstream neurons49.
Since active maintenance in working memory relies on bursting
populations rather than single neurons carrying the information,
especially across long delays6, it seems feasible that a facilitated
read-out through high dimensional representations aids the
transmission of said information. Furthermore, both in rodents
and primates, studies investigating high dimensional coding
properties of (pre-)frontal cortices during the execution of higher
cognitive tasks have demonstrated that this dimensionality col-
lapses in error trials indicating that it is subserving goal-directed
behavior50,51. Overall, our electrophysiological findings therefore
suggest that high dimensional representations are tied to the
presented stimulus material. A recent study has furthermore
demonstrated that attention and working memory share a com-
mon neural basis in the PFC15 hinting at the possibility that the
presence of manifold stimulus features increased attention
towards the stimuli enhancing the neural representation in
working memory.

A consequence of the differential activity pattern during the
stimulus presentation is the concomitant difference in the onset
of neural activity reflecting the upcoming choice. If the switch
from stimulus-related to choice-related activity is taken as an
indicator of decision time52–54, the decision happened sig-
nificantly later for complex stimuli (almost exclusively after delay
onset) shortening active maintenance of the choice-related
activity in working memory. Longer maintenance times have
been demonstrated to result in a decay of the memory trace,
which is hypothesized to be a consequence from stochastic neural
noise causing the degradation of the stored memory over main-
tenance time55,56. For simple stimuli, we observed no stimulus- or
value-related activity during the sample phase. Rather, choice-
related activity emerged much earlier already during stimulus
presentation and as a direct result, maintenance time for the
upcoming choice was prolonged. This could have resulted in
increased trace decay compared to the complex stimuli since
there was an increased opportunity for noise to accumulate and
for interference to occur.

While our study provides interesting insights how stimulus
complexity affects working memory performance on the beha-
vioral level and about the neural correlates associated with this
phenomenon, our study is subject to a few limitations that should
be acknowledged. On the one hand, we did not record from
neural structures other than the NCL in the task and thus our
study does not inform how specific the observed neural responses
are to the NCL. Future studies should be conducted in the same
behavioral framework while recording from other brain struc-
tures to identify if the differentiation between complex and simple
stimuli is selectively represented in the NCL. On the other hand,
we cannot rule out that the observed multiplexing was due to
insufficient isolation of single units. However, given our strict
sorting criteria and the observation of multiplexing in a large
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number of neurons in the NCL population for complex stimulus
trials, we deem it unlikely that this strongly affected our dataset.

In our study, we provide evidence that stimulus material is
influencing working memory. We found that high stimulus-
complexity of a visual stimulus positively affects working memory
performance compared to low stimulus-complexity. Our com-
plementary neuronal data indicate that the neural representations
associated with our two stimulus classes differed substantially. For
complex stimuli, we found high dimensional multiplex activity
patterns as well as a delayed onset of choice-related activity in the
NCL population. For simple stimuli, choice-related activity was
immediately present and the population activity was markedly
low dimensional. These differences in representation could pro-
vide an account for the behavioral differences observed. Since
working memory research has largely focused on memory load
rather than the stimulus material, our study highlights the
importance to carefully select the stimulus material.

Methods
Experimental model and subject details. Subjects were treated in
accordance with the German guidelines for the care and use of
animals in science and all experimental procedures were
approved by a national ethics committee of the State of North
Rhine-Westphalia, Germany (LANUV) and were in agreement
with the Directive 2010/63/EU of the European Parliament and of
the Council of 22 September 2010 concerning the care and use of
animals for experimental purposes. We have complied with all
relevant ethical regulations for animal testing. 27 adult homing
pigeons (Columba livia) of unknown sex were used in this study.
The pigeons were between 1 and 6 years of age. The birds used as
experimental subjects were obtained from local breeders. Of
these, three birds were employed in electrophysiological experi-
ments whereas 24 animals solely took part in behavioral studies
(experiment 1: 11 pigeons, experiment 2: 8 pigeons and experi-
ment 3: 17 pigeons; animals were partially reused between
experiments). Birds were accommodated individually in wire-
mesh cages within a colony room (12 h light/dark cycle; begin-
ning at 8:00 h) where they had ad libitum access to water and grit.
On testing days, food access was restricted and the animals were
maintained between 80–90% of their free-feeding body weight.

Apparatus. Testing was conducted in a custom-built operant
chamber (33 × 34 × 34 cm57). The rear wall of the chamber fea-
tured three horizontally aligned rectangular translucent choice
keys (4 × 4 cm wide) located above a food hopper. An LCD screen
was mounted against the rear wall for the presentation of stimuli
at the choice key locations. Pecks to the choice-keys were
immediately followed by auditory feedback. The chamber was
illuminated by two lights at the top of the chamber with an
additional feeder light affixed on top of the food hopper. The
chamber was situated in a sound-attenuating cubicle and all
experimental sessions were conducted with a constant presenta-
tion of white noise (~60 dB) to prevent external noise from dis-
tracting the animals during the task. Hardware was controlled by
a custom written MATLAB code (2018a, The Mathworks, Natick,
MA, USA)58.

Stimuli. The stimulus set encompassed eight stimuli (Fig. 1b),
consisting of four shaped multicolored images (complex stimuli)
and four gray stimuli of different luminance (simple stimuli). The
gray stimuli were subdivided into two bright stimuli (86.3% white
and 98% white) and two dark stimuli (43.1% white and 54.9%
white). Due to the number of luminance increments between the
respective stimulus and the category boundary (70.6% white) they
were either easy or hard to discriminate.

While the complex stimuli provide at face value more feature
information compared to the simple stimuli, we also verified the
images’ visual information both in the spatial and color
dimension. To estimate the spatial information of the stimulus
classes, we used a bank of Gabor filters. These filters are used for
edge detection and luminance identification in image processing
and they have widely been used as a model of simple cells in the
primary visual cortex59–62. The 68 distinct Gabor filters were
divided into four orientations θ (0 deg, 45 deg, 90 deg and 135 deg)
and 17 sizes s Є {1,…, 17} using the following formula:

F x; y
� � ¼ N

1
N
þHðG x; y

� �� 1Þ
� �

Gðx; yÞ ð1Þ

Here, x and y are the coordinates within the receptive field of the
Gabor filters.

N ¼ 1
.Z

dx
Z

dyGðx; yÞ
� �

� 1 ð2Þ

is the normalization factor that ensures an upper bound of 1
for Gabor convolutions.

H xð Þ ¼ 1 for x≥ 0 ð3Þ
is the Heaviside step function. The Gabor function is defined as

follows:

exp � x02 þ γ2y02

2σ2

� �
cos 2π

x0

λ

� �
ð4Þ

where x’ and y’ are defined as follows:

x0 ¼ xcos θð Þ þ ysin θð Þ ð5Þ

y0 ¼ �xsin θð Þ þ ycosðθÞ ð6Þ
The width of the Gabor filter based on the size of the filter,

σ ¼ 0:0036s2 þ 0:35sþ 0:18 ð7Þ
And the frequency of the width,

λ ¼ σ

0:8
ð8Þ

The Gabor filters are shown in Supplementary Fig. 9. We
calculated the convolution of the filters with each image used in
the study. The average absolute values of the pixels in the
resulting convoluted images were then arranged into a vector
representing the image. We then extracted the median feature
density of each stimulus (Supplementary Fig. 10a).

To estimate the color information of the stimulus classes, we
measured the luminance and chromaticity using a Konica
Minolta Chroma Meter (CS-150) and averaged the result over
10 repeated measurements (Supplementary Fig. 10b).

Behavioral paradigm. Subjects were trained in a paired associa-
tion task that was divided into three distinct experimental con-
ditions (Fig. 1): in all experiments, a placeholder initialization
stimulus appeared on the center key for up to three seconds after
an intertrial interval (ITI) of six seconds. A peck to the initi-
alization stimulus resulted in the presentation of one of the eight
sample stimuli for a fixed duration of one second on the center
key. Following stimulus presentation, the trial continued either
with or without a delay period. In the task without a delay, the
animals could immediately proceed to the next experimental
phase when the confirmation key was pecked. In the delayed
condition, a working memory interval of three seconds followed
the stimulus during which the placeholder stimulus was pre-
sented. The different conditions were tested blockwise so that the
sessions were either “non-delayed” or “delayed” sessions. Since
the animals were first trained in the “non-delayed” condition, this
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part of the experiment was not counterbalanced. After the three
second working memory interval, a peck on the placeholder sti-
mulus cleared the center key and activated the choice keys left
and right to the placeholder. Depending on the stimulus identity,
a choice A or B had to be executed within a time interval of three
seconds. The association of the stimuli with choice A and B was
counterbalanced across all experiments. Thus, while all animals
were exposed to same stimulus set, some animals had to for
example make a left choice for a specific stimulus while other
animals had to make a right choice for the same stimulus.
Depending on the experiment, this choice was either a spatially
fixed choice to the left or to the right (experiment 1, 3 and the
electrophysiological experiment) or a blue or yellow target color
that randomly appeared on the left or right response key
(experiment 2, see Fig. 1b). In case of a correct choice, the animals
were rewarded by having access to food for two seconds. The
ambient light in the operant chamber was turned off for two
seconds when a wrong decision was made.

In the behavioral experiments, effects of stimulus-specific
spatial and color information on working memory performance
were systematically investigated (all experimental procedures are
given in Fig. 1b). In experiment 1, we were interested in
differences in task performance due to stimulus-specific visual
information under uniform reward contingencies with 100%
reward probability for all stimuli using either a simple paired
association task (non-delayed condition) or an additional work-
ing memory component (delayed condition). Experiment 2
replicated the experimental procedure of experiment 1, but
additionally dissociated the upcoming choice from a specific
spatial location to account for potential spatial memory effects. In
experiment 3, we aimed to control for the potential effects of
altered reward contingencies on working memory performance.
In this experiment, two complex stimuli with opposing choice
contingencies received a reward in 30% of all correct choices. The
other two complex stimuli were associated with a reward
probability of 90%. Simple stimuli received an intermediate
amount of reward, i.e. a 50% reward probability in this
experiment.

Behavioral data analysis. To enter further behavioral analysis, all
sessions had to meet the following criteria: At least 70% correct
choices had to be reached to ensure that choices reflected learned
behavior. Behavioral performance of the animals was analyzed
using a linear mixed model with “delay” (yes/no as levels) and
“stimulus” (levels: complex stimuli, simple stimuli) as fixed effects
and the individual animal as a random effect for every condition.
This analysis was computed to identify how the task performance
changes over time in relation to the stimulus-specific information.
All post hoc corrections were calculated using Bonferroni’s
method. All tests were two-sided. We also quantified effect sizes
for post hoc comparisons (Cohen’s d). Behavioral data originating
from electrophysiological recording sessions were analyzed
separately and behavioral results obtained in the electro-
physiological experiments were independent of all other
behavioral tests.

Surgery. After reaching stable behavioral performance for both
stimulus classes, microdrives for electrophysiological recordings
were implanted. Pigeons were initially anesthetized with an
injection of Ketamine (Ketavet, 100 mg/mL; Zoetis, Germany)
and Xylazine (Rompun, 20 mg/mL; Bayer, Germany; ratio 7:3;
0,075 ml/100 g body weight). Feathers overlying the head were
removed and subjects were fixated in a stereotactic apparatus.
Anesthesia was maintained by constant exposure to Isoflurane
(Forene, 100% Isoflurane; Abbot, Germany). Once reflexes were

tested negatively for pain perception, the scalp was cut and
retracted. Stainless steel screws (A2 stainless steel 0–80 × ½ inch
Phillips Countersunk screws) were placed in the skull to serve as
anchors for dental acrylic. Small craniotomies were drilled above
the NCL (coordinates AP+ 5.5 and ML ± 7.563). After transec-
tion of the dura mater, electrode tips were lowered directly below
the brain surface. Custom-built implants64,65 were anchored with
dental acrylic (Omniceram évolution flow; Omnident, Germany)
and another hole was drilled in which a ground electrode was
inserted (Teflon-coated silver wire, Ø = 75 μm, Science Products,
Hofheim, Germany). The incised skin was covered with antibiotic
balm (Fucidine, 20 mg/g Natriumfusidat; Leo Pharma A/S,
Danmark) and sutured. Following surgery, all animals received
analgesic injections with Carprofen (Rimadyl, 50 ml/mL Car-
profen; Zoetis, Germany) and antibiotic powder treatment
(Tyrosur, 1 mg/g Tytothricin; Engelhard Arzneimittel, Germany)
for three days and were allowed to recover for at least ten days.

Electrophysiology. Recordings of neural signals and their analysis
followed the procedures described in detail in Starosta et al.66. In
brief, neural signals were recorded by fifteen 40 μm formvar-
insulated nichrome wires (impedances < 0.01 MΩ; California
Fine Wire, Grover Beach, USA). One 75 μm nichrome wire
(Franco Corradi, Milan, Italy) was used as a reference. All elec-
trodes were connected using microplugs (Ginder Scientific,
Nepean, CA, USA). The electrodes were advanced by turning the
drive screw at least a quarter revolution (~60 μm) 15 minutes
before each recording session. Signals were amplified (400×),
band-pass-filtered (0.5 to 5 kHz) and, digitized using an analog-
to-digital converter (sampled at a frequency of 22 kHz; Alpha
Omega, Nazareth Illit, Israel). Data were recorded using Alpha
Lab SnR recording software (Alpha Omega, Nazareth Illit, Israel)
and analyzed using Spike2 (Version 7.06; Cambridge Electronic
Design, Cambridge, UK). Suspected neural spikes were identified
through amplitude thresholds, sorted manually using principal
component analysis (PCA) and cluster correlations (Spike2,
Version 7.06; Cambridge Electronic Design, Cambridge, UK).
The classification as single units was performed using a custom-
written MATLAB code and required a clearly dissociated dis-
tribution in the PCA space, absence of brief interspike intervals
(<4 ms) and, symmetrical distributions of spikes with minimal
and maximal peak amplitudes (MLIB toolbox, Maik Stüttgen,
MATLAB central file exchange # 37339). Signal-to-noise-ratios
(SNR) of at least 2.0 were mandatory (SNR was computed by
dividing the peak-to-peak amplitude against the noise band dis-
tribution ranging from the 2.5th and 97.5th percentile of the noise
band). Additionally, we manually controlled the channels for
spike events during pecking movements and computed the
number of spikes occurring in an interval of ± 20 ms surrounding
a key peck in a peri-peck time histogram (PPTH). Units that
specifically fired during the temporal interval surrounding key
pecks were excluded from further analysis to avoid potential
pecking-artifacts67.

Neural data analysis. Raw spike counts were filtered with an
exponentially modified Gaussian kernel with 100ms as standard
deviation and a 100ms time constant of the exponential function for
the computation of spike density functions (SDF). The onset of the
sample stimulus served as the temporal origin (t= 0) for the sample
phase. Relevant pre- and post-timings were calculated individually
depending on the duration and nature of the phase. For the overall
data analysis, only neural activity during correct trials was analyzed.
We also computed activity in error trials however to identify whether
neural activity was behaviorally relevant.
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Task related activity—cell classification. To investigate task-
related activity, we computed two-way ANOVAs with factors
“value” (two levels, “high” and “low”) and “choice” (left or right)
separately for the complex and simple stimuli. The stimulus
classes were analyzed separately as we identified major perfor-
mance differences between them in the preceding behavioral
experiments. Value was defined in terms of reward probability in
the case of the complex stimuli, i.e. high vs. low reward prob-
ability. For the simple stimuli, value was defined through the
distinct discrimination difficulty at a constant reward probability.
Low contrast stimuli led to lower behavioral performances and
consequently yielded lower net outcomes, i.e. fewer reward events
across the session compared to the high contrast stimuli.

The two-way ANOVA was applied as a sliding window analysis
with 250 ms window and 100 ms step sizes from 500 ms before
the sample onset until the end of the delay phase. The outcome
phase was not further investigated as reward modulation has been
described in the NCL in many different aspects before, such as
reward prediction error66,68,69, reward amount, and subjective
reward value70,71. We quantified the information carried by
neurons using a measure of effect size (ηp², reflecting the percent
of explained variance), derived from our ANOVA using the
following formula:

ηp
2 ¼ SSEffect

SSEffect þ SSError
ð9Þ

Here, SSEffect reflects the sum of squares of the observed effect and
SSError reflects the sum of squared differences between each
observation and the group mean. In general, effect sizes are
regarded as “small” for values of 0.02 < ηp² < 0.1, moderate for
values of 0.1 < ηp² < 0.2 and “large” for values of ηp² > 0.2 see
ref. 72. To solely account for relevant modulation and rule out
accidental fluctuations in spike rates, we chose a threshold of ηp²
≥ 0.03 that occurred at least in two consecutive analysis windows.
This can be regarded as a conservative measure as every above-
threshold time window offered highly significant results in the
ANOVA (p < 0.01).

Using the effect sizes of the ANOVA, we categorized NCL
neurons into non-mutually exclusive categories:

1. If a neuron exhibited above threshold effects for the factor
choice, it was categorized as choice-related activity.

2. If a neuron exhibited above threshold effects for the factor
value, it was categorized as value-related activity.

3. If value, choice and interaction effects occurred at the same
time, a single neuron represented one single stimulus in
particular at a certain point in time during the task. If a
neuron displayed this effect size pattern, it was categorized
as stimulus-related activity. This classification of stimulus-
related activity was previously used in Rainer et al.35.

4. If a neuron exhibited above threshold effects for the
interaction between value and response, it was categorized
as displaying interaction activity.

To allow for a comparison between the sample and delay phase
and to provide more insight into the temporal dynamics of
activity changes, we analyzed 1 s epochs during the trials
comprising the sample phase as well as the first, second and
third second of the delay.

Chance-based quantity of active cells per category. After each
neuron’s activity pattern had been classified for each experimental
phase, we aimed to identify whether the occurrence of a particular
pattern was significantly different from chance. To quantify the
chance-level estimation of the category analysis, we conducted 200
permutations of the data in which we randomly assigned the groups

to the observed firing rates during the experiment. Here, raw firing
rates were no longer associated with for example left and right
choices or with high and low reward outcomes as they occurred
within the experiments. Instead, the respective group assignments in
the ANOVA were randomly shuffled. Thus, only stochastic above
threshold effects would be detected in this permutation test. As
before, we then categorized the results from each permutation
accordingly into the four activity categories (choice, value, stimulus,
interaction) during each iteration. Since the permutation data barely
ever demonstrated effects above the conservative threshold of ηp² ≥
0.03, we were more liberal in the classification into the stimulus
category which usually required the factors value, response and their
interaction to display above threshold effects. In the permutation
test, only two of the three effects of the ANOVA had to exhibit
above threshold effects to be categorized into stimulus-related
activity. We then tested the frequency of choice, value, stimulus, and
interaction cells in the data for significance by comparing the
occurrence of cells in each category in the recorded and the shuffled
data using Fisher’s exact test. Since the averaged data thus provided a
fractional number, we rounded these numbers up to the nearest
positive integer to provide a valid input for Fisher’s exact test.

Class comparison using a linear mixed model. In a further step,
we also analyzed qualitative differences between the complex and
simple stimuli on the electrophysiological level. To this end, we
computed the mean effect size (ηp²) for each category per individual
neuron during the sample phase and each second of the delay in the
trial. The mean effect was calculated through dividing the observed
effect of each neuron by the number of recorded neurons (104).
This average was always calculated over 10 bins as each individual
analysis phase consisted of 10 individual bins per 100ms duration.
The mean effect size observed during the presentation of complex
and simple stimuli was then compared for the sample phase and
each second of the delay phase using a linear mixed model using the
stimulus class as fixed effect and the individual animal and
recording session as random effects to account for the hierarchical
nature and dependencies of the data. We also quantified effect sizes
for post hoc comparisons and estimated the effect sizes between
complex and simple stimuli (Cohen’s d).

Neural activation schemes. Finally, we aimed to analyze neuro-
nal multiplexing in the NCL population as the previous analyses
were not informative whether activity patterns dynamically
changed in single neurons across the trial. To this end, we gen-
erated four post hoc categories reflecting the most apparent
activity patterns that emerged within the population. In contrast
to the previous categorization, categories were mutually exclusive
in this analysis.

1. Neurons were categorized as “early choice” if they
exhibited choice-related activity patterns already during
the sample phase and demonstrated neither stimulus, value,
nor interaction activity.

2. Neurons were categorized as “late choice” if they exhibited
choice-related activity patterns only after delay onset and
demonstrated neither stimulus, value, nor interaction
activity.

3. Neurons were categorized as “stimulus - no choice” if they
exhibited stimulus, value, or interaction activity, but no
choice-related activity patterns during the sample and
delay phase.

4. Neurons were categorized as “stimulus - choice” if they
exhibited stimulus, value, or interaction activity and then
dynamically switched to choice-related activity patterns
later during the trial.
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We then compared the number of neurons that were
categorized in the four categories for the complex and simple
stimuli using Pearson’s χ² test. We also tested if observed choice-
related effects were subject to change over time during the delay
phase (trace decay). To this end, we calculated the average effect
for all neurons involved in choice coding (early, late and
stimulus-choice neurons) for the complex and simple stimuli in
the first and the last second of the delay phase. This averaged
effect was then compared using a paired t-test.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Further information and requests for data, resources, and reagents should be directed to
and will be fulfilled by the lead contact Roland Pusch (roland.pusch@rub.de). Numerical
source data for figures and graphs in the manuscript can be found in the supplementary
data.

Code availability
Further information and requests for code should be directed to and will be fulfilled by
the lead contact Roland Pusch (roland.pusch@rub.de). Our experimental hardware was
controlled by a custom written MATLAB code (2022b, 2018a, The Mathworks, Natick,
MA, USA) based on the Biopsychology-Toolbox, a free, open-source Matlab-toolbox for
the control of behavioral experiments58. Data collection was performed using Alpha Lab
SnR (Alpha Omega, Nazareth Illit, Israel). Spike sorting was performed using Spike2
(Version 7.06; Cambridge Electronic Design, Cambridge, UK). For characterizing single
units we used the free, open-source MLIB toolbox (Maik Stüttgen, MATLAB central file
exchange # 37339).
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