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Abstract
We are surrounded by an endless variation of objects. The ability to categorize these objects represents a core cognitive
competence of humans and possibly all vertebrates. Research on category learning in nonhuman animals started with the seminal
studies of RichardHerrnstein on the category Bhuman^ in pigeons. Since then, we have learned that pigeons are able to categorize
a large number of stimulus sets, ranging from Cubist paintings to English orthography. Strangely, this prolific field has largely
neglected to also study the avian neurobiology of categorization. Here, we present a hypothesis that combines experimental
results and theories from categorization research in pigeons with neurobiological insights on visual processing and dopamine-
mediated learning in primates. We conclude that in both fields, similar conclusions on the mechanisms of perceptual categori-
zation have been drawn, despite very little cross-reference or communication between these two areas to date. We hypothesize
that perceptual categorization is a two-component process in which stimulus features are first rapidly extracted in a feed-forward
process, thereby enabling a fast subdivision along multiple category borders. In primates this seems to happen in the
inferotemporal cortex, while pigeons may primarily use a cluster of associative visual forebrain areas. The second process rests
on dopaminergic error-prediction learning that enables prefrontal areas to connect top down the relevant visual category dimen-
sion to the appropriate action dimension.
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The world surrounding us offers an endless variety of scenes
and objects. Just look around. You might see a desk, chairs,
books, computers; you instantly recognize them as belonging
to a certain category (furniture, electronics, etc.), although
your specific desk may be unique to you. The apparent ease
of your categorical recognition belies the complexity of this
feat: We effortlessly detect and categorize tens of thousands of
objects from countless possible angles and distances. And we
do so in the blink of an eye (Grill-Spector & Kanwisher,
2005). How is this possible? This article is about psycholog-
ical and neurobiological studies that try to solve this question.

Our review will focus on perceptual categorization in nonhu-
man animals. This research field started with pigeon experi-
ments, and perceptual category learning in birds is still a highly
prolific area of investigation.As successful this research area is, it
suffers from a curious neglect of the neurobiological fundaments
of categorization learning in birds. This is a real deficit, as incor-
porating neurobiology into research on bird learning and cogni-
tion could provide two unprecedented opportunities: First, it
could deepen our understanding of the mechanisms of category
learning in birds from a different angle. Second, it would estab-
lish an avian alternative to the successful neuroscientific inquiries
on categorization that use rodent and primate models.
Therefore, we will also review some of the new develop-
ments in neuroscience outside the avian realm and outline
their possible impact on perceptual categorization learning
research in pigeons. By restricting ourselves in this way,
we unfortunately have to ignore a vast and highly interest-
ing comparative literature on abstract concept learning. We
apologize to all the investigators whose research we there-
fore do not appropriately cite owing to this restriction.
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Categories and concepts

Modified from Keller and Schoenfeld (1950), Cohen and
Lefebvre (2005) defined categorization as an organism’s abil-
ity to respond equivalently to members of the same class, to
respond differently to members of a different class, and to
transfer their reports to novel and different members of these
classes. Categorization is a key component of our cognitive
system since it drastically reduces information load
(Wasserman, Kiedinger, & Bhatt, 1988). Due to the evolution-
ary relevance of categorization learning, humans (Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976; Hegdé, Bart,
& Daniel, 2008) and many more animals (e.g., pigeons:
Herrnstein & Loveland 1964; Yamazaki, Aust, Huber,
Hausmann, & Güntürkün, 2007; dogs: Range, Viranyi, &
Huber, 2007; monkeys: Kromrey, Maestri, Hauffen, Bart, &
Hegdé, 2010; Sigala & Logothetis, 2002; honey bees: Benard,
Stach, & Giurfa, 2006) learn to react in a similar manner to
different objects from the same category.

Usually, categories are distinguished from concepts, al-
though, possibly, this distinction is not a binary difference
but a continuous transition. A category refers to a set of enti-
ties that are grouped by overlapping perceptual features. Take,
for example, the perceptual category Bbook.^Books can come
in different sizes, in different boards and scripts, with hard or
soft cover. But despite these variations, their overlapping fea-
tures make it easy to retrieve the category book when seeing
one. Importantly, different kinds of books can be treated
equivalently as if they were the same, as soon as they are
grouped in the same category (Sidman, 1994). Indeed, once
objects are classified as belonging to a joint category, memory
about individuating features of the diverse items starts to suf-
fer (Lupyan, 2008).

But what about e-books? Are they part of the same catego-
ry as printed books? And what about the books that were read
in the ancient civilizations of Egypt or Rome? These were
handwritten on long strips of papyrus and were read by rolling
a stretch of papyrus from left to right. After reading, this scroll
was placed in a jar, together with further scrolls. What looked
like a modern book in ancient Romewas in fact not a book but
a codex, and it consisted of official documents bound together.
Is it still possible to come up with the category book when
taking e-books and ancient scrolls into consideration? This
problem grows even larger when we reflect about sayings
such as BI can read him like a book.^ All of these examples
cannot be jointly bound in the perceptual category Bbook.^
They are, however, part of the concept of books (Goldstone,
Kersten, & Carvalho, 2017). Concepts are mental elements of
knowledge about objects that have joint features or functions
that do not need to be perceptual. In a famous saying of
Barsalou (1983), the concept of Bthings to remove from a
burning house^means that even children and jewelry become
similar and conceptually bound. It is important to distinguish

between perceptual categories and concepts. As we will see
below, pigeons can learn an astonishing variety of perceptual
categories. But they also seem to master some abstract con-
cepts, such as Bnumber,^ identity, and higher order relations
(for review, see Lazareva & Wasserman, 2017). As outlined
above, however, we will solely focus on perceptual categories
in the present review.

Behavioral experiments on perceptual
categorization in pigeons

Scientific inquiry into categorization took a major shift in the
mid-1960s. Until that time, categorization was seen as a
language-based cognitive ability that was a realm of human
cognition. Then, Herrnstein and Loveland (1964) published
their now-classic study in which they demonstrated that pi-
geons can quickly acquire the category Bhuman^ after being
conditioned to discriminate between hundreds of photographs
of which some depicted humans (Herrnstein and Loveland
used the word Bconcept^ in their title). The birds not only
easily learned to properly discriminate the training stimuli
but also transferred their knowledge to novel photographs.
Numerous subsequent experiments further explored pigeons’
categorization abilities using natural stimuli, such as birds
versus mammals (Kendrick, Wright, & Cook, 1990), individ-
ual pigeons (Nakamura, Croft, & Westbrook, 2003), cartoons
(Matsukawa, Inoue, & Jitsumori, 2004), human action poses
(Qadri & Cook, 2017), different painting styles (Watanabe,
2011; Watanabe, Sakamoto, & Wakita, 1995), human facial
expressions (Jitsumori & Yoshihara, 1997), or human face
identity (Soto &Wasserman 2011). Pigeons even successfully
discriminatemalignant from benign human breast histopathol-
ogy (Levenson, Krupinski, Navarro, &Wasserman, 2015) and
can distinguish English words from nonwords (Scarf, Boy,
et al. 2016). Taken together, pigeons seem to have unexpect-
edly large resources to learn various perceptual categories.

All of these studies adopted the basic procedure employed
by Herrnstein and Loveland (1964): They used an initially
large number of stimuli during discrimination acquisition,
followed by testing transfer ability with novel stimuli. This
procedure should ensure that discrimination has been
established and that subsequent categorization testing is not
based on rote memory. Successful transfer to previously un-
known exemplars of the learned category is then usually taken
as evidence of open-ended categorization ability (Herrnstein,
1990). However, this approach does not necessarily guarantee
that pigeons indeed had only used the presence or absence of
humans in photographs to decide between S+ and S−, respec-
tively. The reason is simple: Humans are often depicted along-
side furniture, streets, houses, or cars. These items could then
be used as an extended feature collection of the category
Bhuman.^ Indeed, pigeons can learn to categorize Bman-made
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objects^ (Lubow, 1974). So the animals in the study of
Herrnstein and Loveland (1964) may simply have used per-
ceptual background features that co-occur with humans to
master the task. Such a strategy would in principle still be
based on perceptual categorization, but using different fea-
tures than what we had expected. Thus, in order to identify
the nature of the formed category, we have to find means to
reliably identify the utilized visual cues. The relevance of this
quest is depicted by results of, for example, Greene (1983),
who discovered that her pigeons exploited spurious systematic
differences of the background in a Bhuman^ categorization
task, rather than using the actual presence or absence of
people.

Different approaches to this problem discovered that pi-
geons can rely on a mixture of background and relevant
stimulus category information to base their decision on.
Wasserman, Brooks, andMcMurray (2015) demonstrated that
pigeons can successfully learn to categorize in parallel 128
photographs into 16 different categories. Since no background
cues were available, the animals had to use pictorial aspects of
the stimuli. However, the spatial location of the photographs
turned out to affect choices in the beginning of the experiment.
This vanished during the progress of learning. Thus, all kinds
of cues can affect categorization learning. To demonstrate that
pigeons can indeed also learn about human body-unique in-
formation, Aust and Huber (2001) trained their pigeons in a
people/no-people experiment. During transfer trials, pictures
of novel human figures were cut out and pasted on previously
seen Bno people^ stimuli. Thus, the pigeons were now
confronted with a stimulus that contained a previously learned
negative background that was combined with a novel positive
foreground that depicted a person. The animals pecked on
such manipulated stimuli, thereby making it likely that they
indeed had used features related to the human body (see also
Aust & Huber, 2002). Further studies tried to reconstruct the
stimulus properties that control categorization behavior by
randomly covering parts of the stimuli with Bbubbles.^ In this
experiment, pigeons and humans had to decide if the depicted
person had a happy or a neutral expression. By analyzing the
success of the subjects relative to the visible components of
the stimuli, Gibson, Wasserman, Gosselin, and Schyns (2005)
discovered that both humans and pigeons mainly relied on the
mouth part of the photographs. To directly reveal the focus of
attention of pigeons during perceptual categorization tasks,
Dittrich, Rose, Buschmann, Bourdonnais, and Güntürkün
(2010) introduced peck tracking to examine the pecking loca-
tions of pigeons in a people-present/people-absent task. Their
results revealed that pecking location was mostly focused on
the head of the human figures. Removal of the heads of the
depicted persons impaired performance, while removal of oth-
er parts of the human figures did not. Using this technique,
Castro and Wasserman (2014, 2017) also demonstrated that
pigeons track features that are category relevant and respond

less to details that only weakly coincide with the presence of
the relevant stimulus. The results of these studies make it
likely that pigeons selectively attend to and choose features
that are diagnostic for the presence of the learned perceptual
category.

Taken together, pigeons can learn an astonishing variety of
perceptual categories. Hereby, they seem to focus their atten-
tion on specific features that predict the presence of a stimulus
that belongs to the rewarded category. If background patterns
systematically correlate with the presence of an S+, the behav-
ior of the animals can also come under the control of such
patterns. We will dwell on the implication of these observa-
tions in the next section.

Learning perceptual categories—Excursion 1:
The reward prediction error and dopamine

Several theoretical accounts have been offered to explain cat-
egory learning. As outlined in the very beginning, we will not
review all of these diverse attempts but will only focus on
those theories that might inform a mechanistic hypothesis on
the neurobiological fundaments of perceptual categories in
birds. To this end, we obviously have to start with the mech-
anisms of learning.

Every stimulus offers a diversity of features, of which only
some are category relevant. In the beginning, the animal can
do nothing more than proceed by using trial and error to iden-
tify the features that are correlated with reward. Consequently,
several categorization theories have incorporated error-driven
learning rules that allow emergence of a selective attention to
relevant stimulus dimensions (Gluck & Bower, 1988;
Kruschke, 1992; Rumelhart, Hinton, & Williams, 1986).
Assuming that the increase in associative strength between a
stimulus and an outcome is proportional to the error magni-
tude between prediction and outcome, a gradient descent of
error is to be expected. This obviously is also the core assump-
tion of the error-driven learning rule by Rescorla and Wagner
(1972). Recently, Soto and Wasserman (2010) put forward a
common elements model of visual categorization that incor-
porates this rule as a driving force to learn common features
within individual stimuli that belong to a category. None of
these features has to be present in all exemplars of a category,
and thus none of them can fully explain categorization behav-
ior. Similarly, the common elements model assumes that each
image is represented by an overlapping collection of elements.
Elements that are only activated by a single image are
stimulus-specific properties that drive the identification of this
individual stimulus. Elements that are activated by several
images from the same category are category specific and drive
categorization learning. Cook, Wright, and Drachman (2013),
for example, trained pigeons on line drawings of birds and
mammals. When analyzing transfer to novel instances, the
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authors discovered that the birds had mostly learned some key
visual features that helped to disambiguate between classes.
Thus, the pigeons were able to select the diagnostic parts and
were able to tolerate some image alterations as long as the core
features were preserved. The common elements model would
predict such findings but also those of low-level features that
come to predict categorization learning (Greene, 1983; Huber,
Troje, Loidolt, Aust, & Grass, 2000; Troje, Huber, Loidolt,
Aust, & Fieder, 1999).

Studies of reward processing by dopaminergic midbrain
neurons and their target regions in mammalian frontostriatal
networks have shed light on the mechanisms by which
nervous systems update predictions, associate subjective
values to events, and select responses based on feedback
(Schultz, 2016). These insights provide a post hoc neuro-
physiological correlate of the Rescorla and Wagner (1972)
theory. Let us therefore make an excursion into the dopa-
minergic system before later coming back to categorization
learning in birds.

Midbrain dopaminergic cell groups in mammals project to
frontostriatal targets and beyond. Dopamine neurons show
increased activation when a reward is received (Waelti,
Dickinson, & Schultz, 2001). This activation has different
components, but the most important one for the present ac-
count is constituted by a fast activation or depression of the
dopaminergic signal that codes a positive or a negative reward
prediction error, respectively (Nomoto, Schultz, Watanabe &
Sakagami, 2010; Schultz, 2016).When reward is contingently
preceded by a cue, dopaminergic activity shifts backward
in time to the reward predicting cue such that the burst is
now correlated with the CS+, but not with the reward itself
anymore (Schultz, 1998). When a predicted reward is not
delivered, or is smaller than predicted, dopamine neurons
drop their activity at the time point of expected reward
delivery. The same neurons show an increase of activation
when the reward was larger than predicted (Bayer &
Glimcher, 2005). Schultz (2016) argues that these re-
sponses function as feature detectors for the goodness of
a reward relative to its prediction: If the reward is fully
predicted, then no signal change occurs. If the reward is
better than predicted, then dopamine neurons emit a posi-
tive signal. If the reward is smaller than predicted, then the
same neurons emit a negative signal (see Fig. 1a).
Dopamine neurons also comply with further assumptions
of Rescorla and Wagner (1972), such as, for example, the
blocking effect (Waelti et al., 2001). Based on these find-
ings, Montague, Hyman, and Cohen (2004) have argued
that dopamine neurons essentially perform the computa-
tion proposed by the Rescorla–Wagner theory. Thus, when
predictions turn out to be wrong, dopamine retunes the
system to improve its predictions. According to this view,
dopamine activity carries a teaching signal that modifies
the response selection (see Fig. 1b).

Learning perceptual categories—Excursion 2:
The neuronal basis of categorization
in primates

Over the past decade, neurobiological accounts of categoriza-
tion in primates have taken a new route. About 10 years ago,
the inferior temporal cortex (ITC) of monkeys was mostly
seen as a mere storehouse of visual images that were selec-
tively retrieved by the prefrontal cortex to enable category-

Fig. 1 Dopamine-mediated reward prediction error hypothesis (Schultz,
1998). a Activity pattern of a dopamine neuron during the process of
classical conditioning. In Trial 1 the animal did not expect a reward.
Therefore, the dopamine cell responds to reward delivery with a sharp
increase of activity. In Trial n, when learning became asymptotic, the
dopamine neuron does respond to the conditioned stimulus (CS; the less
predictable cue) but no longer to the unconditioned stimulus (UCS; which
is predicted by the CS). When the reward is omitted in Trial n + 1, the
dopamine neuron ceases to fire at the time point when reward was ex-
pected. Thus, dopamine neurons can deliver a message of Bbetter than
expected^ or Bworse than predicted^ to forebrain structures. bDopamine-
mediated signals could continuously adjust synapses in target areas to
ensure every generated action that produced an unexpected result acti-
vates a new surge of synaptic changes to ensure future action adjustments
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based decisions. Recordings from the monkey ITC had re-
vealed diverse cell populations, each responsive to a distinct
but overlapping set of stimuli (Vogels, 1999). ITC neurons are
known to respond to diagnostic features of stimuli that enable
a successful categorization of these patterns (Sigala &
Logothetis, 2002). During the process of learning a categori-
zation task, the population response of ITC neurons shifts
moderately to enable higher stimulus selectivity for the critical
features (Baker, Behrmann, & Olson, 2002). Due to massive
parallel processing of large numbers of neurons, selectivity for
a combination of features is markedly enhanced during cate-
gorization learning, such that both feature-based and
configuration-based coding is enabled within ITC at a
single-cell level (Baker et al., 2002).

But is this category-coding ability of ITC-cells a result of
top-down instructions from prefrontal areas, or does it emerge
from bottom-up input? Already in the mid-1990s, Simon
Thorpe demonstrated that when humans watched a stream of
images where each image was flashed for just 20 ms, event-
related potentials signaled categorical decisions within about
150 ms after stimulus appearance (Thorpe, Fize, & Marlot,
1996). This feat likely made a purely feed-forward-driven
visual categorization mechanism. Subsequent studies demon-
strated that human fast categorization is based on visual areas
comparable to the monkey ITC (Curran, Tanaka, &Weiskopf,
2002). How is such a fast, purely feed-forward categorization
at ITC level possible?

The primate ITC can solve categorization problems by rap-
idly computing a vector that distinguishes between various
object categories, despite individual differences between ob-
jects within a class (DiCarlo, Zoccolan, & Rust, 2012). Just
50 ms after picture exposure, a population of monkey ITC
neurons can be selective for a certain image category
(DiCarlo & Maunsell, 2000). This is nicely shown in a study
by Hung, Kreiman, Poggio, and DiCarlo (2005): Here, mon-
keys were shown 77 stimuli that could be categorized into
eight classes, such as toys and faces, while ITC neurons were
recorded. The activity of these neurons was then analyzed
with a linear classifier—a machine learning algorithm that
categorizes items based on the value of the linear combination
of features of these items. A linear classifier that was trained
with the input from the recorded neurons could categorize
these stimuli with an accuracy of above 90%. The categoriza-
tion accuracy of the classifier steeply increased with time,
such that 70% accuracy was reached just 12.5 ms after the
onset of activity of ITC neurons. Classifier performance also
increased linearly with the number of recorded cells, such that
only about 100 neurons were needed over a period of less than
20 ms to categorize stimuli with very high accuracy (Hung
et al., 2005). These fast responses support bottom-up visual
object categorization at ITC level despite changes in object
position or background (Li, Cox, Zoccolan, &DiCarlo, 2009).
So, is the primate ITC sufficient to run all processes that are

needed for perceptual categorization from stimulus onset up to
the final decision of the animal? Certainly not.

The prefrontal cortex (PFC) of primates is a second critical
area for categorization learning. When monkeys are trained to
categorize different objects into two groups, PFC cells show a
sharp differentiation between categories (Freedman,
Riesenhuber, Poggio, & Miller, 2001). PFC cells also stay
active during a delay period when the stimulus is no longer
shown, and they display a high level of task-relevant activity
during the subsequent decision phase (Lundqvist et al., 2016).
In addition, category coding of PFC neurons quickly changes
when new category boundaries are created by switching to the
new category and ceasing to respond to old category bound-
aries (Freedman et al., 2001). Thus, PFC neurons flexibly
code the current category boundaries, based on reward feed-
back consecutive to own behavior (Freedman&Miller, 2008).

ITC and PFC interact closely during categorization. Existing
category borders of ITC seem to be sharpened by PFC top-down
input in a task-dependent manner (Kauffmann, Bourgin,
Guyader, & Peyrin, 2015; Pannunzi et al., 2012). This top-
down input becomes especially relevant during rule changes
when new category borders have to be selected based on PFC
circuits (Roy, Riesenhuber, Poggio, & Miller, 2010). Most im-
portantly, even if multiple category borders are already represent-
ed at ITC level, it requires the PFC to learn the rules according to
which certain categories are selected for action, while other cat-
egory borders are neglected (Seger&Miller, 2010). Accordingly,
monkeys with PFC lesions are, in principle, able to categorize
objects but fail to translate this ability into rule-based decisions
(Minamimoto, Saunders, & Richmond, 2010).

Taken together, a minimalistic account on the neural fun-
daments of perceptual categorization in primates involves two
structures, ITC and PFC, which have complementary func-
tions. The ITC encodes detailed visual information by a par-
allel activation of a large neuronal population. These differ-
ently tuned cells encode information about all kinds of cate-
gory borders that can be extracted by simple computational
means such as, for example, linear classifiers. In addition, the
coding properties of these neurons can be modestly modified
by dopaminergic input and by top-down influences from the
PFC. Prefrontal areas, on the other hand, receive massive do-
paminergic input and are importantly tuned by this prediction
error coding feedback. The PFC interacts with the ITC to
retrieve existing category-based information and to transform
this into decision and action processes. The PFC thereby
swiftly switches between different ITC-based category bor-
ders, depending on changing task contingencies. It should
again be emphasized that this concentration on just the ITC
and PFC is a minimalist view on the system—a view that
ignores that structures like hippocampus and striatum also
have their own unique contributions to specific other aspects
of categorization behavior.

But now it is time to return to birds.
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The avian visual pathways and the bird
B‘prefrontal^‘ system in a whirlwind

Both birds and mammals have two ascending visual pathways
to the forebrain; the tectofugal (comparable to the mammalian
extrageniculocortical system), and the thalamofugal pathway
(comparable to the geniculocortical system).

The tectofugal pathway (see Fig. 2, depicted in dark
yellow) ascends from the retina to the optic tectum, to the
thalamic nucleus rotundus, and then finally terminates in the
forebrain entopallium (Mouritsen, Heyers, & Güntürkün,
2016). In pigeons, the tectofugal system controls visual tasks
in which the bird has to look at visual stimuli in its frontal
visual field and responds to them (Remy & Güntürkün,
1991; Güntürkün & Hahmann, 1998). Because practically
all perceptual categorization tasks in pigeons use setups in
which the birds scrutinize the visual stimuli with their fron-
tal visual field and then peck them, it is likely that the
tectofugal system is the most important neural component
for our understanding of perceptual categorization in pi-
geons. Entopallial neurons have reciprocal interactions
with a cluster of associative areas (jointly depicted in
green) that surround the entopallium and that alter their
activity patterns during different visual object distinction
tasks (Stacho, Ströckens, Xiao, & Güntürkün, 2016).

Recordings from entopallial neurons reveal that they re-
spond to a large number of overlapping features. For example,
Scarf, Stuart, Johnston, and Colombo (2016) recorded from
the entopallium while the animals were required simply to
peck on one of 12 different visual stimuli. The authors discov-
ered that many cells in the entopallium were vigorously
responding to several stimuli, while showing only modest
modifications of their spike trains when processing distinct
stimuli. Verhaal, Kirsch, Vlachos, Manns, and Güntürkün
(2012) trained pigeons in a go/no-go task while recording
from the entopallium. They discovered that entopallium neu-
rons rapidly learn to respond to rewarded stimuli, while quick-
ly ceasing to respond to no-go cues. Colombo, Frost, and
Steedman (2001) and Johnston, Anderson, and Colombo
(2017a, 2017b) demonstrated, in addition, that entopallium
and associative visual area neurons keep firing for a specific
cue during the delay period of a delayed-matching-to-sample
task, and so possibly support the retention of critical visual
information. Thus, entopallium and associative visual area
neurons seem to prefer broad, overlapping stimulus classes
and can modify their activity patterns according to reward-
associated task contingencies.

The thalamofugal visual pathway (see Fig. 2; shown in
blue) ascends from the retina to the thalamic nucleus genicu-
late lateralis, pars dorsalis (GLd) and from there to the visual
Wulst in the telencephalon. The thalamofugal system seems to
mainly receive visual input from the lateral visual field
(Güntürkün & Hahmann, 1998; Remy & Güntürkün, 1991).

The Wulst also has reciprocal connections with the visual
associative areas. Thus, bothmajor ascending visual pathways
merge in this area (Shanahan, Bingman, Shimizu, Wild, &
Güntürkün, 2013).

The associative visual areas have reciprocal connections
with a structure in the most posterior part of the pigeon fore-
brain: the nidopallium caudolaterale (NCL; see Fig. 2). A
large number of studies make it likely that the NCL is a func-
tional equivalent to the PFC of mammals (Güntürkün, 2012).
Similar to the PFC, the associative NCL integrates multimodal
information and connects this higher order sensory input to
limbic and motor structures, including the striatum (Kröner &
Güntürkün, 1999). Thus, like the PFC, the avian NCL is also a
convergence zone between the ascending sensory pathways
and the descending motor systems (Güntürkün & Bugnyar,
2016). Accordingly, NCL neurons code for different

Fig. 2 a Skull and brain of pigeon depicted as combined CT/MRT-based
image (Güntürkün, Verhoye, De Groof, & Van der Linden, 2013). b
Organization of the visual pathways in pigeons and their projections to
the Bprefrontal^ NCL. Tectofugal system (shown in yellow) starts with
the retinal projections to the optic tectum. From there, tectofugal projec-
tions reach, via the thalamic n. rotundus (Rt), the entopallium (E), which
then projects to surrounding associative visual areas (shown in green).
Thalamofugal visual system is shown in blue and begins with the retinal
projections to the thalamic nucleus geniculate lateralis, pars dorsalis
(GLd), and from there to the visual Wulst. Since the Wulst also projects
to the associative visual areas, these structures receive input from both
pathways and in addition interact with the nidopallium caudolaterale
(NCL), which is a functional equivalent to the mammalian prefrontal
cortex. NCL projects to the (pre)motor arcopallium and the striatum.
From there, down-sweeping projections realize the motor output of the
animal. Glass brain of the pigeon is based on Güntürkün et al. (2013).
(Color figure online)
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modalities in task-dependent manner (Moll & Nieder, 2015,
2017) and prospectively encode future behavior based on
learned stimulus associations (Veit, Pidpruzhnykova, &
Nieder, 2015). Importantly, they control what should be re-
membered and what should be forgotten (Rose & Colombo,
2005), encode future events (Scarf et al., 2011), decision-
making (Lengersdorf, Güntürkün, Pusch, & Stüttgen, 2014),
action-related subjective values (Kalenscher et al., 2005;
Koenen, Millar, & Colombo, 2013), rule tracking (Nieder,
2017; Veit & Nieder, 2013), numerosity (Ditz & Nieder,
2015), visual category (Kirsch et al., 2009), and the associa-
tion of outcomes to actions (Starosta, Güntürkün. & Stüttgen,
2013; Johnston et al., 2017a; Liu, Wan, Shang, & Shi, 2017).

NCL lesions also interfere with all cognitive tasks that are
known to depend on the mammalian PFC (Güntürkün, 1997,
2005, 2012; Kalenscher, Ohmann, & Güntürkün, 2006). The
learning-related plasticity of NCL very likely depends on its
dense innervation by dopaminergic fibers that release dopa-
mine during learning and executive tasks (Karakuyu, Herold,
Güntürkün, & Diekamp, 2007; Herold, Joshi, Hollmann &
Güntürkün, 2012). NCL and PFC therefore represent a case
of parallel evolution of mammals and birds that resulted in the
convergent emergence of brain areas that subserve executive
cognitive functions (Güntürkün, 2012).

In summary, the functional organization of the visual and
Bprefrontal^ avian forebrain is highly similar to the mamma-
lian pattern. Together with their input and output structures,
they form the visuomotor system of the bird brain. Now we
can combine insights from primate research with cognitive
and neuroscientific inquiries to develop a mechanistic hypoth-
esis on perceptual categorization in birds.

A mechanistic neuroscientific hypothesis
on perceptual categorization in pigeons

Let’s combine the collective evidence discussed so far in a
framework that links population-level category coding in the bird
visual forebrain with the prediction error-driven neural learning
dynamics in the NCL. Let’s first look for evidence of population-
level category-specific coding in the bird visual system.

Koenen, Pusch, Bröker, Thiele, and Güntürkün (2016) test-
ed the idea of a population-level category coding of visual
associative neurons. Their pigeons were not required to dis-
criminate between stimulus categories but just pecked on any
upcoming stimulus to obtain food. The abstract stimuli differed
in color, shape, spatial frequency, and amplitude. The spike trains
of the simultaneously recorded visual associative neurons were
used to post hoc identify the stimulus classes the animals saw. To
this end, a representational dissimilarity matrix (RDM) was cal-
culated from the spikes such that neural output of each neuron to
each stimulus was correlated with the neural responses to every
other stimulus. Thus, each stimulus pair could be depicted with a

gray value code that corresponds to the degree of dissimilarity
(calculated using the Spearman’s rank correlation coefficient) of
the neuronal response patterns. The gray values help to
quickly visualize the degree of (dis)similarity of cellular
populations to specific stimuli (see Fig. 3).

Koenen et al. (2016) revealed that basic stimulus categories
such as pattern, color, amplitude, and spatial frequency were
discernable from the neuronal population responses. It is im-
portant to remember that the animals were not conditioned to
discriminate between stimuli but were merely pecking at each
of them to obtain food. Accordingly, the actual behavior of the
animals did not differ between stimulus categories, although
their neural responses did. Thus, associative visual neurons of
the avian forebrain reveal category-specific population cod-
ing, even without any categorization training. This is exactly
what would be required to perceive a perceptual coherence in
different images, even without categorization training. Indeed,
Herrnstein and de Villiers (1980) had proposed that differen-
tial reinforcement may not produce but merely disclose per-
ceptual groupings that are bottom-up driven at the pictorial
level and produce stimulus generalizations that are then
picked up and fur ther shaped by re inforcement
contingencies. Consequently, Astley and Wasserman (1992)
reported that pigeons perceive similarity among members of
basic-level categories, making it likely that the birds had per-
ceived basic-level categories to be perceptually cohesive.

In a subsequent study to Koenen et al. (2016), Azizi et al.
(2018) confronted pigeons with a large set of photographs that
depicted animate (humans; nonhumans) and nonanimate
items (natural objects; artificial objects). The subcategories
were partly further subdivided (humans = bodies vs. faces;
nonhumans = animal bodies vs. animal faces; natural objects
= vegetables vs. fruit; artificial objects = tools vs. traffic
signs). This stimulus set had been previously used to reveal
category-specific population coding in monkey ITC
(Kriegeskorte et al., 2008). As in Koenen et al. (2016), the
pigeons in this new study merely had to peck on each stimulus
to obtain food. Cellular responses from entopallium and sur-
rounding associative areas were this time analyzed with a
linear discriminant analysis (LDA) to identify a linear combi-
nation of features with which categories can be separated
based on their spike trains. It turned out that individual neu-
rons did not significantly distinguish between categories,
while the whole neuronal population did. More specifically,
the recorded cells evinced a highly significant categorization
along the animate/inanimate border. A more specific analysis
revealed that this categorization was mainly driven by the
category Bhuman.^ Further scrutinizing of the data set finally
demonstrated that the computation of this category did not
emerge in the entopallium but in the associative visual areas.
Pigeon neurons reliably and correctly categorized photo-
graphs of human bodies or faces with a linear increase in the
number of associative visual neurons analyzed, and they
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reached practically 100% with just 35 cells. As such, only a
small number of neurons in the visual associative forebrain of
pigeons are sufficient to recognize the presence or absence of
a person in a photograph.

Taken together, even at the level of visual association areas
of pigeons, visual categories like Bhuman^ can be revealed at
the level of small neuronal populations. Since neither catego-
rization training nor differential rewarding paradigms were
involved, it is likely that these category-specific coding proper-
ties are driven by mere feed-forward stimulus input statistics.
These results overlap with the findings of theoretical analyses
(Gale & Laws, 2006) as well as imaging and cell recording data
in monkey and human visual associative cortex (Kriegeskorte
et al., 2008; Stansbury, Naselaris, & Gallant, 2013). Behavioral
studies in monkeys and pigeons reveal similar findings.
Monkeys that are playing a same–different task are more likely
to confuse different faces or different fruits as Bsame,^ based on
simple overlapping perceptual features (Sands et al., 1982).
Very similar results occur when pigeons are tested with leave
forms of different tree species (Cerella, 1979).

As outlined above, population-level category coding in the
primate ITC is just one pillar of primate categorization. An
additional pillar is the PFC, which learns to select response
patterns based on a dopamine-mediated reduction of the pre-
diction error. As a result of this learning process, the PFC
starts to select the relevant visual category dimension from
the ITC and to choose the appropriate action dimension

from premotor cortex and striatum. This is reminiscent of
Sutherland and Mackintosh (1971) who proposed that dis-
crimination learning Binvolves two processes: learning to
which aspects of the stimulus to attend and learning what
responses to attach to the relevant aspects of the stimulus
situation^ (p. 21).

There is good evidence that the neural dynamics of the
avian NCL are characterized by dopamine-mediated reduc-
tions of prediction errors, just like in primate PFC (Puig,
Rose, Schmidt, & Freund, 2014). The organization of the
avian dopaminergic system and its terminal areas in the
NCL are highly comparable to that of the mammalian PFC
(Durstewitz, Kröner & Güntürkün, 1999; Durstewitz, Kröner,
Hemmings, & Güntürkün, 1998; Herold et al., 2011;
Waldmann & Güntürkün, 1993; Wynne & Güntürkün,
1995). As in mammals, dopamine release and local dopamine
receptor adjustments in NCL change during the course of
learning of associative tasks (Herold et al., 2012; Karakuyu
et al., 2007). As predicted by reward prediction error accounts,
blocking of forebrain D1 receptors in pigeons abolishes dif-
ferent learning speeds relative to different reward magnitudes
(Diekamp, Kalt, Ruhm, Koch, & Güntürkün, 2000; Rose,
Schiffer & Güntürkün, 2013; Rose, Schmidt, Grabemann, &
Güntürkün, 2009). In addition, and again in line with the
mammalian dopamine literature, blocking D1 receptors in
the associative pigeon forebrain disrupts local visual attention
processes (Rose, Schiffer, Dittrich, & Güntürkün, 2010). A

Fig. 3 Cellular coding of variously colored objects and grating patterns in
the pigeon’s associative visual areas. Analysis of the population of cells
using a representational dissimilarity matrix (RDM) shows that neuronal
responses to colored stimuli are discernible in the left upper corner due to
highly correlated spike patterns of visual-associative units (dark gray: low
dissimilarity; light gray: high dissimilarity). Similarly, responses to

grating patterns can be discerned in the right lower corner. These are
further subdivided by spatial frequency. Diagonal is black since the neural
activity induced by each stimulus is compared to itself, resulting in
highest possible similarity. Note. From Koenen et al. (2016), with per-
mission of corresponding author and publisher
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recent study demonstrated that avian learning unfolds identi-
cally as in monkeys, by increases and decreases of phasic
dopamine release depending on better-than-expected or
worse-than-predicted outcomes (Gadagkar et al., 2016).

Taken together, our hypothesis assumes that population-
level category coding in visual associative areas and a
dopamine-mediated reward-prediction error reduction in
NCL constitute the neural core of visual category learning in
pigeons. Our explanation does not necessarily require repre-
sentations at exemplar or prototype level but assumes that the
animals simply optimize their reward chances by exploiting
the output of their massively parallel visual system that pro-
cesses low-level visual features. This does not exclude the
possibility that pigeons can learn rules or acquire abstract con-
cepts when low-level input is insufficient for appropriate de-
cisions. However, we are convinced that simple parallel anal-
yses are able to explain even quite complex examples of avian
categorization behavior. For example, Grainger, Dufau,
Montant, Ziegler, and Fagot (2012) and Scarf, Boy, et al.
(2016) had shown that both baboons and pigeons learn or-
thography, seemingly guided by letter-string-based algo-
rithms. However, Linke, Bröker, Ramscar, and Baayen
(2017) recently demonstrated that a deep learning network
that received mere gradient orientation features as input units
and operated according to Rescorla–Wagner learning rules
could perfectly predict baboon lexical decision behavior.
Thus, the power of a combination of population-level feature
analysis and dopamine-mediated reward-prediction error re-
duction can represent quite a powerful mechanistic explanans
for at least a good part of animal categorization behavior. In
fact, our hypothesis operates along the same steps of reason-
ing as the previously discussed common elements model of
Soto and Wasserman (2010). What we add is a detailed neu-
robiological view of the processes that Soto and Wasserman
had outlined in computational terms. By this, such an overlap-
ping theoretical view in visual categorization in pigeons now
becomes testable from neuron to behavior.

In the following, we both visualize and outline the pro-
posed processes that might unfold during categorization (see
Fig. 4): When a pigeon starts to perceive and to respond to
various visual patterns, possibly different neural processes
emerge within the visual associative forebrain areas and the
NCL. In the visual associative structures of the avian fore-
brain, several million neurons will respond to the stimuli with
slightly individually distinct, but largely overlapping, spike
patterns. The coding property of each cell mostly will be too
broad to enable the discrimination of a certain category.
However, at the population level, different kinds of categorical
distinctions will be discernable in a feed-forward manner.

While all of this unfolds, the pigeon will sometimes be
rewarded after pecking on a certain stimulus, and sometimes
not. Each reward will trigger a dopamine release in different
projection areas of the dopaminergic system, including the

NCL. Trial by trial, this dopamine-mediated prediction error
adjustment will strengthen those synaptic connections that
were active shortly before dopamine release, while other syn-
apses will be downregulated that were not followed by re-
ward. NCL neurons constitute the interface between ascend-
ing sensory and descending motor pathways. As a result, spe-
cific sensory-prefrontal-motor circuits will be strengthened.
Those circuits that code for a rewarded combination of cate-
gory boundaries are then associated with the actions that pro-
duce the rewarded outcome.

The visual associative areas of birds are innervated by only
a small number of dopaminergic fibers and have a modest
density of D1 receptors (Durstewitz et al., 1999; Wynne &
Güntürkün, 1995). Thus, similar reward-dependent synaptic
adjustments might also go on, albeit at a lower level, in the
avian associative visual structures. In addition, it is conceiv-
able that top-down input from the NCL sharpens category
borders of visual neurons according to reward contingencies.
These two synergistic mechanisms could explain why visual
neurons in pigeons quickly retune their activity patterns ac-
cording to the reward properties of learned stimuli (Colombo
et al., 2001; Johnston et al., 2017a, 2017b; Scarf, Stuart, et al.,
2016; Verhaal et al., 2012).

Fig. 4 Proposed neuroscientific hypothesis on perceptual categorization
learning in pigeons. Pigeon perceives stimuli showing humans or cars and
then processes t hem in visual pathways. Stimuli seen in pigeons’ frontal
visual field are primarily processed in the entopallium and then projected
to the visual associative areas. Population coding properties of visual
associative neurons can result in categorical distinctions between
objects (humans; cars) or their canonical parts (faces; tires). Neurons of
the visual associative areas project to the Bprefrontal^ NCL in a feed-
forward manner and from there receive feedback projections. If the ani-
mal is playing a human/no-human categorization task and has pecked on
a photograph depicting a human or a car, dopaminergic neurons (shown
in brown) will adjust their firing frequency relative to the subsequent
occurrence of reward or nonreward. Thereby, local NCL networks that
receive input from a population of human-coding visual neurons that
initiated a key peck will be synaptically strengthened. Back projections
from the NCL to visual structure are able to further sharpen category
boundaries, depending on experimental conditions. NCL neurons take
part in a decision process with which downstream premotor areas are
activated to execute the peck on a key that shows a human or a car.
(Color figure online)

Learn Behav (2018) 46:229–241 237



In summary, our hypothesis combines the rich experimen-
tal and theoretical tradition of categorization learning in pi-
geons with neurobiological insights on visual processing and
dopamine-mediated plasticity in primates. Our approach asso-
ciates these until now mostly unconnected areas of research
and combines them with a hypothesis that can be tested at
different levels of analysis. We hope that our neuroscientific
bird’s eye view on category learning will provide new angles
of inquiry, thereby enabling fresh insights on this fascinating
field of science.
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