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1 | INTRODUCTION
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Abstract

Corvids possess cognitive skills, matching those of nonhuman primates. However, how
these species with their small brains achieve such feats remains elusive. Recent stud-
ies suggest that cognitive capabilities could be based on the total numbers of telen-
cephalic neurons. Here we extend this hypothesis further and posit that especially
high neuron counts in associative pallial areas drive flexible, complex cognition. If true,
avian species like corvids should specifically accumulate neurons in the avian associa-
tive areas meso- and nidopallium. To test the hypothesis, we analyzed the neuronal
composition of telencephalic areas in corvids and noncorvids (chicken, pigeons, and
ostriches—the species with the largest bird brain). The overall number of pallial neu-
rons in corvids was much higher than in chicken and pigeons and comparable to those
of ostriches. However, neuron numbers in the associative mesopallium and nidopallium
were twice as high in corvids and, in correlation with these associative areas, the corvid
subpallium also contained high neuron numbers. These findings support our hypothe-
sis that large absolute numbers of associative pallial neurons contribute to cognitive
flexibility and complexity and are key to explain why crows are smart. Since meso-
/nidopallial and subpallial areas scale jointly, it is conceivable that associative pallio-
striatal loops play a similar role in executive decision making as described in primates.
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and show signatures of consciousness (Nieder et al., 2020). However,

little is known about how these species, with their small absolute brain

The last two decades have shown that birds of the corvid family possess
extraordinary cognitive skills that match those of nonhuman primates
(Emery & Clayton, 2004; Gunttrkin & Bugnyar, 2016; Gunttrkan,
Strockens et al., 2017). Crow species use tools and meta-tools (Bird &
Emery, 20093; Taylor et al., 2007), reason about causality (Jelbert et al.,
2014), self-regulate their behavior (Kabadayi et al., 2016), plan the
future (Kabadayi & Osvath, 2017), possess a theory of mind (Bugnyar
et al., 2016), recognize themselves in the mirror (Prior et al., 2008),

sizes in comparison to primates, can achieve such impressive cognitive
skills. Although avian and mammalian forebrains are overall differently
organized (Guntiirkin, 2012; Gunturktin & Bugnyar, 2016; Guntdrkdn,
Stacho et al, 2017), avian and mammalian pallia are homologous
(Jarvis et al., 2005; Reiner et al., 2004), share network connectivity
patterns, (Shanahan et al., 2013), and cortex-like canonical circuits in
their sensory pallia (Stacho et al., 2020). In primates, higher cognitive
capabilities are thought to correlate with cortical neuron numbers
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(Dicke & Roth, 2016; Herculano-Houzel, 2012a; Herculano-Houzel,
2017) and large pallial neuron numbers could also underlie corvid cog-
nition (Herculano-Houzel, 2017). Indeed, due to high neuron densities,
the pallia of songbirds (including corvids) and parrots reach twice the
amount of neurons than of primate species with similarly sized brains
(Olkowicz et al., 2016). Additionally, the pallial mass of songbirds and
parrots scales as a power function of its neuron numbers with an expo-
nent close to 1, that is, linearly, which implies that average neuronal cell
size does not increase as brains are made of more neurons (Herculano-
Houzel et al., 2015). This is a rare trait, shared with primates, while in
other species the pallium expands faster in volume than in neuron num-
bers. Songbird and parrot brains thus remain fairly small as they gain
neurons, and as a consequence, corvids with their larger brains prob-
ably accumulate more pallial neurons than other avian species with
similar or even larger absolute brain sizes (Herculano-Houzel, 2009,
2012b; Olkowicz et al., 2016), possibly providing corvids with pro-
nounced cognitive abilities (Cnotka et al., 2008; Dicke & Roth, 2016).

Complex cognition might especially rely on neuron numbers in asso-
ciative pallial areas. Although the associative prefrontal region of the
human cortex contains a similar 8% of cortical neurons as in other pri-
mates, the absolute number of prefrontal neurons is much larger in
humans than in other primates (Gabi et al., 2016). In corvid species,
the associative pallial brain areas meso- and nidopallium are enlarged
and their relative volume is correlated with innovation rate and tool
use (Lefebvre, 2013; Lefebvre et al., 2002; Mehlhorn, Hunt et al., 2010;
Sayol et al., 2016; Timmermans et al., 2000). The mesopallium is a clas-
sic associative forebrain entity that receives no direct sensory input
and does not project out of the telencephalon (Atoji & Wild, 2012). This
is similar for the nidopallium, with the sole exception of a small thalam-
opallial sensory input zone at the nidopallial base (Atoji & Wild, 2009).
We therefore hypothesized that corvid cognition rests, at least in part,
on larger neuron numbers in these two pallial associative areas. To test
our prediction, we analyzed in six avian species the number as well as
the relative and absolute distribution of pallial neurons among five pal-
lial areas (hyperpallium, arcopallium/amygdala complex, hippocampal
formation, mesopallium, and nidopallium) and the subpallium. We used
three corvid species (hooded crow, carrion crow, and rook), as well as
pigeons, chicken, and ostriches. Pigeon and chicken are widely used in
behavioral studies and have cognitive skills below corvids (Gunttrkin,
Strockens et al., 2017; Wright et al., 2017). The ostrich has the largest
absolute brain size in birds but is not known to show remarkable cog-
nitive skills (Overington et al., 2009). It thus constitutes a critical case
for neuron number comparisons with our crows. We used the isotropic
fractionator to determine neuron numbers and densities in each fore-
brain structure independently of structure size (Herculano-Houzel &
Lent, 2005).

If total pallial neuron numbers predict cognitive abilities across bird
species, we would expect corvids to possess more pallial neurons than
the other three species. If, however, only higher associative neuron
numbers are relevant, corvids should specifically have more meso-
and nidopallial neurons. For comparison, we chose the nonassociative
hyperpallium as a primary sensory and motor area, the hippocampal
formation (relevant for avian spatial navigation), arcopallium/amygdala

complex (constituted by the pre/motor arcopallium and adjacent amyg-
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daloid areas), and the subpallium (constituted by striatum, pallidum,
septum, and nucleus accumbens) (Atoji & Wild, 2009, 2012; Ditz &
Nieder, 2016; Gentner & Margoliash, 2003; Gunturkin & Bugnyar,
2016; Lengersdorf et al., 2014; Moll & Nieder, 2015).

2 | MATERIALS AND METHODS
2.1 | Specimen

All procedures were carried out in accordance with the guidelines
for care and use of animals provided by a National Ethics Commit-
tee of the State of North Rhine-Westphalia, Germany. Four pigeons
(Columba livia domestica, racing homer breed) and four chicken (Gal-
lus gallus domesticus, brown warren breed) were obtained from local
breeders, were killed by an overdose of pentobarbital, and perfused
with 4% paraformaldehyde in phosphate buffer (0.1 M, pH 7.4, PFA).
Brains were removed and postfixed for 1-2 weeks in 4% PFA. Four
Carrion crows (Corvus corone), four hooded crows (Corvus cornix) and
four rooks (Corvus frugilegus) were killed by hunters in Austria and
Germany during regular pest control. Directly afterwards, brains were
removed, and immersion fixed in 4% PFA for 2-4 weeks. For each
species, body weights were taken before the head was removed. Four
ostriches (Struthio camelus) bred for consumption purpose were killed
by a local butcher and brains were removed and treated as described
for the crow species. For long term storage, brains were transferred to
an anti-freeze solution (30% glycerol, 30% ethylene glycol, 40% phos-
phate buffer, and stored at —20°C in a freezer; Herculano-Houzel et al.,
2014). Before processing, brains were transferred to a 30% sucrose
in 0.1 M phosphate buffer (PBS) for cryoprotection until brains until
brains sank to the bottom of the solution. One hemisphere of each brain
was then cut in 80 um thick frontal sections using a cryostat (Leica,
Wetzlar), while the other hemisphere was stored in anti-freeze solu-
tion for future studies. Brain slices were stored in 0.1 M PBS + 0.1%
sodium azide until further processing.

2.2 | Dissection

Telencephalic subdivisions hyper-, meso-, nido-, and subpallium, as
well as hippocampal formation and arcopallium/amygdala complex,
were dissected in the sliced hemisphere with the aid of a microscope
and using micro blades. Separation of hyperpallium and mesopallium
was performed along the lateral pallial lamina, which was easily
visible in all species. To separate hyperpallium from hippocampal
formation, we cut along the dorsal pallial lamina. However, this lamina,
separating parahippocampal area and hyperpallium, was not always
identifiable in anterior aspects of the telencephalon. To cope for this
problem, a straight cut from the upper tip of the lateral ventricle to the
dorsal border of the brain was made as soon as the lateral ventricle
showed up. In most cases, this was only necessary for 2-3 slices since
afterwards the dorsal pallial lamina became visible. Separation of
mesopallium from hyper- and nidopallium was done along the lateral

and the ventral pallial lamina, respectively. Both borders were well
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visible in all investigated species. As nidopallial borders, we used the
ventral pallial lamina to separate nido- from mesopallium and the
pallial-subpallial boundary to separate nidopallium from subpallium.
Again, these borders were easy to identify in all animals. Delineation of
the subpallium from the rest of the telencephalon was done along the
pallial-subpallial boundary. To separate subpallium from diencephalon,
we cut directly below the anterior commissure. When we reached the
rostral extent of the commissure, we continued slicing on this level
until the lateral ventricle reached the outer liquor space, forming a
natural border between telencephalon and diencephalon. Thus, the
area we call subpallium contains major subareas medial and lateral
striatum, septal nuclei, pallidal nuclei, and the nucleus accumbens.
Delineation of the arcopallium/amygdala complex posed no problem
at all, since the dorsal amygdaloid lamina, representing the border
between arcopallium/amygdala complex and nidopallium was always
visible. To delineate the hippocampal formation (comprising the hip-
pocampus proper and parahippocampal areas), we used the borders
described above. In addition, we included all tissue on the outer side
of the lateral ventricle (mainly dorso-lateral corticoid area). Due to
the lack of clear borders between some parts of the delineated areas
(e.g., anterior aspects of the hyperpallium—hippocampal formation
border, subpallium—diencephalon border posterior to the anterior
commissure) we cannot exclude a slight intermingling between areas.
However, based on the relatively small extent of these uncertain bor-
der regions we assume this effect is negligible. In pigeons and chickens,
the olfactory bulb could be delineated as well. However, since we could
not delineate this area in the other species, in which the olfactory bulb
is barely present, we did not include these samples into our analysis.
To verify our delineations, we used brain atlases when applicable.
For pigeons, we used the brain atlas by Karten and Hodos (1967),
for chickens, the atlas by Puelles et al. (Puelles, 2007) and for corvid
species the atlas of the Japanese jungle crow by Izawa & Watanabe
(2007). For the ostrich, no atlas was available. However, the majority
of borders (especially the pallial laminae) were very well visible in
the ostrich, making delineations easy. Figure 1 depicts delineation

examples for pigeons, chicken, ostriches, and carrion crows.

2.3 | Acquisition of neuron numbers

Neuron numbers for each sample were determined using the isotropic
fractionator method (Herculano-Houzel & Lent, 2005), which has
been independently demonstrated by at least three groups to be more
efficient and at least as accurate and precise as standard stereology,
with the advantage that estimated cell numbers are completely inde-
pendent of tissue volume and sampling strategy (Bahney & Bartheld,
2014; Miller et al., 2014; Ngwenya et al., 2017).

Following delineation, tissue was carefully rinsed in phosphate
buffered saline (PBS) and then briefly dried using Whatman cellu-
lose filter paper (Merck, Darmstadt) to remove excess amount of
PBS. Afterwards, the tissue was weighed and then homogenized in
40 mM sodium citrate with 1% Triton X-100 (Merck, Darmstadt) using
a Tenbroeck tissue grinder (Wheaton, Millville). The DNA marker 4/,6-
diamidino-2-phenylindole (DAPI) was added to the suspension at afinal

concentration of 0.5 ug/ml to stain cell nuclei. To determine the total
amount of nuclei in the suspension, 10 ul of the suspension were filled
in a Neubauer improved counting chamber (Merck, Darmstadt). Using
a fluorescence microscope (Axiolmager M1, Zeiss, Gottingen, 200x-
400x magnification, numerical aperture 1.0 [200x] and 0.75 [400x],
mercury short arc lamp light source with Zeiss filter set 49) stained
nuclei (and thus cells) within the suspension were counted. Counting
for each area was performed in at least four 10 ul samples. Additional
aliquots were counted when the coefficient of variance between the
samples was higher than 0.15. Since, in contrast to mammals, avian ery-
throcytes contain a nucleus, care was taken to not include nuclei of
these blood cells into the counts. This was relatively easy since avian
erythrocytes possess an oval, elongated nucleus which is distinctively
different from the rather roundish nuclei of neurons and glial cells. Fur-
thermore, erythrocytes showed a strong auto fluorescence in the red
and green spectrum that could be uses as a further exclusion criterion
(see Figure 2 for an example). Based on the average counts of all sam-
ples for an individual area and the volume of sample, the total amount
of cells for each area could be calculated. To determine the propor-
tion of neurons, an immunocytochemistry against the neuronal nuclear
marker NeuN was performed. A fraction of each sample was labeled
with a mouse monoclonal anti-NeuN antibody, coupled to either a red
or green fluorophore (MAB377X, clone A60, either Alexa Fluor®488
or 594 conjugated, Merck, Darmstadt; dilution: 1:300), which has been
previously used to label neurons in birds (Olkowicz et al., 2016). For
each sample, 500 randomly selected DAPI positive cells were checked
for a double labeling against NeuN (see Figure 2), using a fluorescent
microscope (Axiolmager M1, Zeiss, Gottingen, 400x magnification,
numerical aperture 0.75, mercury short arc lamp light source with Zeiss
filter set 49 for DAPI labeling, Zeiss filter set 38 for Alexa Fluor®488
labeling, Zeiss filter set 45 for Alexa Fluor®594 labelling). Again,
erythrocytes were discarded from the analysis. Based on the ratio
between NeuN positive and negative cells, the ratio of neurons/non-
neurons could be calculated for each sample and total neuron numbers
as well as the amount of total nonneuronal cells could be determined.
We than calculated neuron densities for each of the six areas as well as

the percentage of total telencephalic neurons situated in each area.

2.4 | Statistical analysis

Statistical analyses were performed using SPSS (version 20, SPSS
Inc., Chicago, IL, United States of America). For all analyses, we used
linear parametric methods with an a-level of.05. To test if neuron
numbers, neuron densities, and distribution of total telencephalic
neurons differed between species in one area, we conducted uni-
variate analyses of variance for each area with “species” (pigeon,
chicken, ostrich, carrion crow, hooded crow, rook) as within-subject
factor for each variable, with subsequent Bonferroni corrected
post hoc tests. Since an increasing amount of studies suggest an
interaction of striatal with associative cortical structures during
processing of higher cognitive functions in mammals (Antzoulatos
& Miller, 2011; Boot et al., 2017), we also calculated linear regres-

sion analyses between subpallial neurons and neurons in each of
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FIGURE 1 Schematic outlines of the areas dissected in this study (left side) and corresponding brain slices stained with a Nissl stain (right
side). Depicted are anterior and posterior examples for pigeons (a), chicken (b), ostriches (c), and carrion crows (d). Outlines for hooded crows and
rooks were almost identical to carrion crows and are thus not shown. Note that most of the borders between the areas are clearly visible due to
the pallial laminae, which were also visible in the unstained slices used in this study. Scale bars indicate 1000 um in (a) and (b), and 5000 um in (c)
and (d). We would like to thank Christina Herold and Noemi Rook for supplying pictures of Nissl-stained sections
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FIGURE 2 Example picture of a DAPI stained cell solution of an
ostrich nidopallium sample (a). In contrast to mammalian species,
avian erythrocytes possess a nucleus and are thus stained by the DNA
marker DAPI (white arrows). To not inflate the number of nonneuronal
cells, erythrocytes numbers were not included in the analysis.
Erythrocytes nuclei could be easily differentiated from other
nonneuronal and neurons by their unique elongated shape and a
strong autofluorescent corona surrounding the DAPI stain (b), not
present in other cell types. After acquisition of total cell numbers,
samples were immunocytochemically stained against the neuronal
nuclei marker NeuN. (c) depicts an example picture of a such stained
sample of the ostrich nidopallium showing only the DAPI signal, while
(d) depicts the same sample showing also the NeuN signal in green. E,
Erythrocyte; NC, nonneuronal cell; Ne, Neuron. Scale bars indicate

20 um

the pallial areas with a Bonferroni corrected significance level at
p<.001.

3 | RESULTS

3.1 | Corvid brains have high pallial and subpallial
neuron numbers

The ostrich telencephalon weighs 8.2 g per hemisphere and is thus
about three times larger than those of our three corvid species (ca.
2.5 g) and over 16 times larger than those of pigeons and chicken (all
p < .05, Tables 1 and 2). Still, all three corvid species had over 350 mil-
lion neurons in each telencephalic hemisphere, comparable and, in case
of rooks, even higher neuron numbers than the 282 million telen-
cephalic neurons of ostriches. With fewer than 100 million neurons,
pigeons and chickens trailed far behind corvids (p < .05 for all corvid
vs. pigeon/chicken comparisons and ostrich-rook comparison, all other
comparisons: not significant (n.s.), Figure 3a, Tables 1 and 2). This pat-
tern was due to major differences in neuron densities between corvids,
pigeon, and chicken on one side (100,000-200,000 neurons/mg telen-
cephalon) and ostriches on the other (<30,000 neurons/mg; p < .05,
Tables 1 and 2).
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FIGURE 3 Absolute neuron numbers within one hemisphere of
the telencephalon (a), pallium (b), and subpallium (c) in three noncorvid
(red tones) and three corvid species (blue tones). While corvids
showed significant higher pallial neuron numbers than pigeons and
chickens for telencephalon and pallium, only one corvid species (rook)
had significantly more telencephalic/pallial neurons than ostriches.
Telencephalic and pallial neuron numbers in carrion crows and hood
crows were statistically on par with ostriches. For the subpallium,
carrion crow, and rook neuron numbers were significantly higher than
in ostriches, while hooded crow numbers were comparable to
ostriches. Further significance values can be found in Table 1. Error
bars indicate standard error of the mean

Within the telencephalon, the ostrich pallium alone, withits 7.5 g per
hemisphere, was over three times as large as those of corvids (ca. 2 g),
and more than 17 times as large as the pallium of pigeons and chicken
(all p < .05, Tables 1 and 2). Despite these size differences, corvid
species had over 300 million pallial neurons, compared to 200 millionin
ostriches and fewer than 100 million in pigeon and chicken (Figure 3b,
Table 2). At the statistical level, corvids had more pallial neurons than
pigeons and chicken (all p < .05), rooks more than ostriches (p < .05),
and ostriches more than pigeons (p < .05; Figure 3b and Table 2). Thus,
corvid species have overall more (rook vs. ostrich) or at least as many
pallial neurons as the ostrich (carrion and hooded crow vs. ostrich),

although the ostrich pallium is by far the largest.

85U8017 SUOWILLOD 8A11E81D) 8|qeot [dde 8Ly Aq peue/ob e Sapie YO ‘8sh JO S8 J0j AIqiT 8UIUO AB|1MW UO (SUOTIPUOD-PUB-SWB 00" A8 | 1WA Je.q 1 |Bu [Uo//SAny) SUORIPUOD pue Swis | 8y18es *[£202/70/82] Uo AriqiTauliuo Ajim ‘Auewses sueyood Aq 86252°8U0/200T 0T/I0p/W0d" A8 1mAfe.d1puluo//sdny wouy pepeojumod ‘0T ‘220z ‘T986960T



STROCKENS ET AL.

RESEARCH IN
SYSTEMS NEUROSCIENCE

WILEY- =%

TABLE 1 Significance values for all comparisons made in this study

THE JOURNAL OF COMPARATIVE NEUROLOGY

Telencephalon Pallium Hyperpallium Mesopallium Nidopallium A./A. Complex Hp Formation Subpallium

F52=207.1, p<3.0x10™ | Fs25=172.0, p<1.5x10™ F525=355.9, p<2.5x10" | Fis25=102.8, p<1.4x10™ | Fs25=102.3, p<1.4x10™ | F525=32.80, p<1.94x10° | Fs26=28.84, p<5.38x10° | Fis29=214.7, p<2.2x10™°

P c O CC HC R P c o cc HC R | c 0 CcC HC R P c O CC HC R P c O CC HC R P c O CC HC R P c O CC HC R P c O CC HC R
13 ne 0 0 0 0 a0 0 w0 o R I a0 %0 w0 %o e o0 00 0 o e B30 ne e ne o [0l e ne e ne o0 0 X0 o
c [ns @ oo o0 oo ns o w0 o0 w0 [ns o o7 o4 o | ns w w0 o0 wo [ ns o w0 o oo | s oo [T P B o i e | e o oo o o
o 000 000 000 000 000 | 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
cc [ oo oo ns ns |0 w0 0w ne ns o oz om ne s |0 ow o I ) PR p— as e | as o [ e G W
HC 000 000 000 ns ns 000 000 000 ns ns 003 004 000 ns ns. 000 000 000 ns ns. 000 000 000 ns ns ns ns 000 ns. ns, ns. ns 000 ns ns. 000 000 000 ns ns.
R [0 o0 o0 ne ne m o o s ns o0 o5 @ ns ns @ o0 o 0 ns @ o0 0 ns ns ne e @0 e ons e ns @0 0 ne o o0 0 0 ns
Weight distribution

Telencephalon Pallium Hyperpallium Mesopallium Nidopallium A./A. Complex Hp Formation Subpallium

Fis25=16.95, p<2.96x10° Fis25=68.43, p<4.48x10™"" | Fs25=15.98, p<4.53x10° | F(s25=15.86, p<4.77x10° | F(525=2.28, p<0.90 Fs25=15.54, p<5.49x10° | Fs25=20.43, p<7.54x10”

P c O CcC HC R P c o cc HC R P c o CC HC R P c o CC HC R P c o CC HC R P c o CC HC R P c o CC HC R P c o CC HC R
[ o %0 ns ns s e [om| ne o0 ne o oz ns ot ns o ns o o o o o2 o0 o0 o o5 o0 s
c o o2 oo ns  ns | ns o s ons ons |om o ns ons ons | o o a0 o0 oon ns ns ns ons [om @ 0 ns ons
° w on ™ o w | @ R w o ow |ns o0 m o o o2 s ns s ns |ow oo ™ @ o

N/A n.s.

cc ns 070 000 ns. ns. ns ns 000 ns. ns. ns. ns. 000 ns ns. 007 ns. 000 ns ns 000 ns ns ns. ns. ns. ns. 000 ns ns
He ne ne OO0 ne ns o8 ns 00 ns ns | ot ns o0 n ne [EGH ne [RESY e e o ns ns ns ns | oo e [N na s
R ne ns (00 ne e ne ne o0 s ons ne ne |00 ns ne @8 ns 00 ne ns o ns 0 0 one as ne 00 s ne
Absolute neuron numbers

Telencephalon Pallium Hyperpallium Mesopallium Nidopallium A./A. Complex Hp Formation Subpallium

Fis26=20.09, p<8.54x107 | Fs.26=21.26, p<5.59x10” Fs26=12.51, p<0.000024

Fs25=35.15, p<1.11x10°

Fs26=18.38, p<1.6x10° Fs.20=3.89, p<0.016 Fs26=5.86, p<0.02 Fs29=11.92, p<0.000033

P c O CC HC R P c o cc HC R P c O CcC HC R P c 0 cC Hc R P c 0 cC Hc R P c 0 CcC HC R P c O CC HC R P c 0 CcC Hc R
3 . o %0 o om a om0 oo oo ne oo e 05 o ne ne w0 o0 w0 ) oo B ne e ne oo B e ne ne e o1 02 o1
e |ne ne o0 o2 o ne o @ oo o |ne w o7 o wt | ne o0 w0 ow | e ne o 0w oo | ne ® ne na ne | ne @ e ne ne | ne e o2 o oo
o [om e o ne oo | o om ne e o | oo an an e | e ne o o6 @ |ns ns o ne o | o ow neone one |om o ae o ne [ e s wr s o7
cc |wo om o ne ns o o0 ns ne ns | s o s e ne |0 o0 o ne e [0 om o PR PP FART P ne ne oot o oo e ne
HC 001 002 ns ns ns. 000 001 ns ns. ns. 05 012 ns ns. ns. 000 000 016 ns 046 001 003 ns ns. ns. ns ns ns. ns. ns. ns. ns. 094 ns ns. 042 086 ns ns. ns.
R [0 o0 o ns s o o0 o ns  ns @ @ ns ns ns @ 0w o0 ns o @ o0 o2 ns ns @ o o7 ne ns
Neurons densities

Telencephalon Pallium Hyperpallium Mesopallium Nidopallium A./A. Complex Hp Formation Subpallium

F29=11.8, p<0.000036 | Fs25=12.59, p<0.000023 Flo29=4.51, p<0.0077

Fs25=18.19, p<1.77x10°

Fs.25=9.26, p<0.00017 Fs.24=3.27, p<0.03 F5.25=8.39, p<0.00031 F(s.25=6.87, p<0.00094

P c O CC HC R P c o cc HC R P c O CcC HC R P c O CcC HC R P c 0 CC HC R 4 c 0 CC HC R P c 0 CC HC R P c O CC HC R
P ns 023 ns ns 043 ns 013 ns. ns 038 ns ns ns ns ns. ns. 001 ns ns 000 ns. 024 ns  ns ns ns. ns. ns ns. ns, 005 ns ns ns ns ns ns. ns ns ns
c |n @i ne e e |ne | ne  neone e @ ne ne one e o ne ne o one | e o ne ne one s @ ns one e [os w0 ou s ot | ns @ as e one
o | o w0 oo oo oo @ o2 o |ns s w2 w0 e |01 o @ ot o0 |04 o w2 o0 o0 |ns o2 ne s e | s [0 na neone | e [ood % ns |2
He | e ne floodl ne ne|ne ne fo@] ne ne |ne e 0@ oae e | e ne Bl e o6 [ne ne 0w ne n |ne ne oneone ns | e foos] ns ne ne [ ne e ne ns.
R [08 s o0 ns ows w8 ne 00 e ns e e ool e ne @ ne o0 ne 0w e ne o ne o ne n ne e ne one e [0 ne ne e ns ne 2] ns ne
Neuron distribution

Telencephalon Pallium Hyperpallium Mesopallium Nidopallium A./A. Complex Hp Formation Subpallium

Fis25=4.15, p<0.011 Fis25=19.41, p<1.1x10° Fs25=1.89, p<0.147 Fis25=3.97, p<0.013 F(s29=4.68, p<0.0072 F 529=8.18, p<0.00035 Fis29=4.15, p<0.011
P c 0 cc HC R P c o cc HC R P c 0 cCc Hc R P c 0 cc Hc R P c 0 cC HC R P c 0 cC HC R P c O cCc HC R ] c O CcC HC R

c B e @ ns ons s
° ne o @ ne ne |0 o w w0
N/A n.s.
cc ne ne 0% w e [an e N & e
He n ne ne ns e | e na RN e n

ne 08 ns one ons ne ns ns ons ons ne ne 015 00 015 ne ns one ons e
ns ne ns ns | s as ns ne  ns | as ne 021 07 00 | e %0 ne

065 ns 07 o 0% |ns ne 064 o5 o1 |ns ne o2 o5 on | ne 050 o ne ne

ns ne 07 ns ns |ne one om ne one o5 o2 0w ne ns [ns one 0% ne s

ne ne 04 ne ne [ns ns o8 ne ne [0 0z om ne ne | ne ne one one ns

ns ns 08 s ons ns ns  OH s ons 05 02 01 ns s ne s ns ns ons

Note: Significance values for all comparisons made in this study. For all analyses, we used linear parametric methods with an a-level of .05. For each variable, we
calculated univariate ANOVAs for each area with species as within-subject factor, followed by subsequent post hoc tests (Bonferroni corrected for multiple
comparisons) in case of a significant main effect. Significant differences are highlighted in green (p < .05) while nonsignificant trends are highlighted in yellow

(p<.1).

Abbreviations: A./A. complex, arcopallium/amygdala complex; C, chicken; CC, carrion crow; HC, hooded crow; O, ostrich; P, pigeon; R, rook.

The ostrich subpallium with its 0.67 g per hemisphere, is about twice
as large as that of the three corvid species and has over 10 times the
mass of those of pigeons and chicken (Table 2). However, ostriches have
only 24 million subpallial neurons, while hooded crows (51 million), car-
rion crows, and rooks (both 74 million) have many more (ostrich vs. car-
rion crow/rook, each p < .05; Figure 3c, Table 2). Despite their much
smaller brains, pigeons, and chicken were still statistically on par with
ostriches. These effects resulted from the much lower subpallial neu-
ron densities in ostriches (35,000 neurons/mg), compared to the other
species (100,000-200,000 neurons/mg, compare Figure 5b). Finally,
we also analyzed the proportions of mass and neuron numbers in the

different compartments of the telencephalon (Figure 4, Tables 1 and 2).

We found that the relative distribution of mass or numbers of neurons
in the telencephalon does not systematically distinguish corvids from
the smaller pigeons and chickens. However, the distributions do dif-
fer in ostriches in comparison to the other species, especially for the
hyperpallium.

3.2 | Corvids have more associative pallial neurons
We hypothesized that corvids have high associative pallial neuron
numbers even when compared with the large brained ostrich. Indeed,

the ostrich mesopallium weighs 1.2 g while corvids stand at 0.5 g (all
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FIGURE 4 Mass (a) and neuron (b) distribution in the
telencephalon of six avian species. Ostriches accumulate a significant
higher percentage of their telencephalic mass and neurons in their
hyperpallium (blue) than all other species while their meso (red) and
nidopallium (green) contains a significant lower percentage of mass in
comparison to almost all other birds (all p < .05 except pigeon—ostrich
comparison in the nidopallium). In addition, the nidopallium of
ostriches contains a significantly lower percentage of neurons in
comparison to carrion crows and hooded crows, while the comparison
to pigeons (p <.053) and rooks (p <.058) barely missed significance.
See Table 1 for further significance values

p < .05, Table 2). In contrast, the three corvid species (81-116 million)
had at least twice the number of mesopallial neurons than the ostrich
(41 million) and even more than pigeons and chicken (10-16 million,
p < .05 for all corvids compared to all non-corvids, Figure 5, Table 2).
Similarly, while the ostrich nidopallium weighs 3.2 g, and thus twice as
much as that of corvids (1.1-1.2 g), all three corvid species had at least
twice as many nidopallial neurons (157-214 million) than the ostrich
(83 million) and 5-10 times more than pigeon and chicken (21-29 mil-

lion, p < .05 for all corvids in comparison to all noncorvids, except for
the hooded crow vs. ostrich comparison (n.s.), Figure 5, Table 2).

This pattern stands in contrast to other pallial areas. Ostriches
have a large hyperpallium (2 g per hemisphere) while that of corvids
weighs less (0.3 g) and pigeon and chicken reach just about 0.05 g (all
p < .05, Tables 1 and 2). In terms of neuron numbers, ostriches (61 mil-
lion) and corvids (49-63 million) are about equal (all p > .05, Tables 1
and 2) and surpass pigeons and chicken (p < .05 for all corvid/ostrich
vs. pigeon/chicken comparisons, Figure 5, Tables 1 and 2). Arco-
pallium/amygdala complex neuron numbers vary between 9 million
(ostrich) and 1 million (pigeon) with only the ostrich versus pigeon
comparison being significant (p < .05; Table 2) while all other com-
parisons (including corvids) failed to reach significance. A compara-
ble pattern was also observed for the hippocampal formation where
neuron numbers ranged between 14.5 million (ostrich) and 4-5 mil-
lion (pigeons/chicken) with only ostrich vs. pigeon/chicken comparisons
being significant (all p <.01, Tables 1 and 2).

Corvids thus surpassed the other species selectively in associative
neuron numbers, which tightly mirrored numbers in the subpallium
(see above and Table 2). Indeed, using linear regressions with a Bon-
ferroni corrected significance level at p < .001 we found that subpal-
lial neuron numbers scale tightly across all six species together with
mesopallial (r2 = .850) and nidopallial (r2 = .879) neuron numbers. This
relation was considerably weaker for hyperpallium (r%2 = .487) and not
significant for arcopallium/amygdala complex and hippocampal forma-
tion (Figure 6).

4 | DISCUSSION

We departed from the hypothesis that a part of the remarkable
cognitive prowess of corvids results from their high absolute numbers
of associative pallial neurons. To test this assumption, we estimated
the neuron numbers of all major telencephalic components in three
corvid species as well as in noncorvid chicken, pigeon, and ostrich using
the isotropic fractionator method. Especially the comparison with the
ostrich was a tall task, given that it is the animal with the largest bird
brain. Indeed, we found that the mass of the associative meso- and
nidopallium of ostrich brains is more than twice of those of corvids,
but nevertheless only holds less than half the number of neurons as
corvids have. In contrast, such a difference was not visible in the other
nonassociative pallial areas. Finally, especially meso- and nidopallium
scale closely with subpallial neuron numbers. These findings constitute
a strong support for our hypothesis that the numbers of associative
pallial neurons drive cognitive prowess and thus constitute a key fun-
dament of the outstanding cognitive abilities of corvids (Abeyesinghe
et al., 2005; Bagotskaia et al., 2010; Balakhonov & Rose, 2017; Bird
& Emery, 2009a, 2009b; Dufour et al., 2012; Gunturkan, Strockens
etal., 2017; Scarf et al., 2016; Wright et al., 2017).

The avian associative meso- and nidopallium are not function-
ally homogenous areas. This is especially true for the nidopallium,
which contains three primary sensory subregions (auditory, visual,
trigeminal) that make up 7% of the nidopallial volume (calculated from
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FIGURE 5

(a) Total number of neurons within six telencephalic areas of one hemisphere in three corvid and three noncorvid species.

Noncorvid species are labelled with red colors while corvid species are labeled with blue tones. Areas, which are known to play a role in higher
cognitive functions (meso- and nidopallium), are highlighted in grey. Within these associative areas, corvids possessed in all cases significantly

more neurons than pigeons and chickens and, with one exception (the nidopallium of hooded crows), also higher neuron numbers than ostriches.
While there were only few, species-specific differences in the nonassociative arcopallium/amygdala complex and hippocampal formation, the
neuron numbers in the mostly sensory hyperpallium were on par in ostriches and corvids. Differences in the subpallium followed the pattern of the
associative areas. (b) Neuron densities of the areas shown in (a). For both associative areas, we found ostriches to have significantly lower neuron
densities than all other species. All other comparisons between species in these areas (except for higher mesopallial neuron densities in rooks in
comparison to hooded crows and pigeons) failed to reach significance. Significantly lower neuron densities in ostriches in comparison to all other
species were also present when analyzing the whole telencephon and pallium. However, this difference reached not in all cases significance, when
analyzing the nonassociative areas separately. Furthermore, hippocampal neuron densities were significantly higher in chicken in comparison to
the other species. For the sake of clarity, only the most important significance values were plotted. All other values can be found in Table 1. Error

bars indicate standard error of the mean

Gunturkln et al,, 2013; Mehlhorn, Haastert et al., 2010), but also the
large nidopallium caudolaterale (NCL), which is thought to be the
functional equivalent to the mammalian prefrontal cortex (Eugen et al.,
2020; Gunturkin & Bugnyar, 2016; Gunttrkin et al., 2021). The NCL
is highly relevant for cognitive functions and is involved in processes
like working memory, decision making, reward prediction, and is
suggested to play a role in episodic-like memory (Allen & Fortin, 2013;
Ditz & Nieder, 2016; Guntlrkin & Bugnyar, 2016; Lengersdorf et al.,
2014; Moll & Nieder, 2015; Nieder et al., 2020). Unfortunately, the
borders of the NCL are, like the borders of the PFC in mammals, quite
difficult to identify without detailed neurochemical analyses (Eugen
etal.,, 2020; Wynne & Glintirkin, 1995), especially in species that have
been less anatomically scrutinized up to now. We therefore refrained
from delineating the NCL in our study to avoid any unwarranted

conclusions. Besides NCL, nidopallium also hosts further associative

areas like nidopallium caudocentrale (NCC), a higher-order limbic
forebrain area, and the nidopallium caudomediale (NCM), an auditory
associative structure (Atoji & Wild, 2009; van Ruijssevelt et al., 2018).
The mesopallium, in contrast, does not contain any primary sen-
sory areas and does not project out of the telencephalon (Atoji & Wild,
2012), despite the fact that, like the nidopallium, it can also be subdi-
vided into several subregions. Thus, the mesopallium can be considered
a purely associative area that receives only indirect input from all sen-
sory modalities and the limbic system (Atoji & Wild, 2012). Studies have
shown that the mesopallium is highly involved in learning and mem-
ory tasks like imprinting (Atoji & Wild, 2012; Chaves & Hodos, 1997;
Horn, 1998) or associative learning (Marzluff et al., 2012), and some
of its subareas play a major role in song processing and vocal learn-
ing (for review see Hahnloser & Kotowicz, 2010). Thus, the massively

larger absolute numbers of mesopallial neurons in corvids compared to
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FIGURE 6 Relationship of neuron numbers in the subpallium with neuron numbers in the pallial areas hyperpallium (a), mesopallium (b),
nidopallium (c), arcopallium/amygdala complex (d), and hippocampal formation (e) over all species. Regression analysis revealed a significant
(Bonferroni corrected at p < .01) and high correlation of subpallial neurons with neurons in the associative mesopallium (b) and nidopallium (c).
However, subpallial neuron numbers correlated much more weakly or not at all with neurons in the nonassociative hyperpallium,

arcopallium/amygdala complex, and hippocampal formation

noncorvids falls in line with studies showing that the relative size of the
mesopallium is increased in species with more flexible and innovative
behavior (Lefebvre et al., 2002, 2004; Mehlhorn, Hunt et al., 2010; Tim-
mermans et al., 2000). Still, our finding that the ostrich mesopallium is
about three times as large in mass as the mesopallium of corvids, but it
is the corvid mesopallium that has at least twice as many neurons as the
ostrich mesopallium, underscores the risk of relying on absolute brain
structure size as a proxy for comparisons of neuron-based functional
properties across species.

It should be noted that the delineated areas were based on def-
initions of the Avian Brain Nomenclature Consortium (Reiner et al.,
2004) in combination with clear anatomical landmarks to ease dis-
section in unstained slices (see Figure 1 for outlines). However, over
the last decade several studies that were based on transcriptomic
data suggested different pallial subdivisions and borders (Chen et al.,
2013; Gedman et al., 2021; Jarvis et al., 2013). Application of these
borders would have resulted in a different pattern of pallial partitions.
Figure 1 depicts the delineation that we used. According to the series
of studies from the Jarvis lab, the green labelled region constitutes a
combination of nidopallium and intercalated pallium, the red area is
ventral mesopallium, while the blue labelled region is a combination
of hyperpallium, intercalated hyperpallium, and dorsal mesopallium.
We refrained from using these borders because the pallial subdivi-

sions identified by genetic expression studies are in partial conflict

with some of the existing connectivity data. For example, a recent
study could show a strong, columnar-like organized interconnectiv-
ity within the hyperpallium (hyperpallium apicale [HA]; interstitial
nucleus of HA [IHA]; hyperpallium intercalatum [HI]; hyperpallium
dorsale [HD] as well as a second and different one within the dorsal
ventricular ridge, encompassing nidopallium as well as ventral and
dorsal mesopallium; Stacho et al., 2020). Delineating the avian pallium
according to transcriptomic data (Chen et al., 2013; Gedman et al.,
2021; Jarvis et al., 2013) would have wrongly rearranged the whole
columnar connectivity profile of the avian sensory pallium as discov-
ered by Stacho et al. (2020). In addition, the thalamic sensory input
to the hyperpallial layers IHA, HI, and HD (Karten et al., 1973) are
crucial components that guide the differentiation between associative
and nonassociative areas. Since our differentiation of “associative”
and “nonassociative” areas are based on connectivity, we decided
to apply the borders suggested by the Avian Brain Nomenclature
Consortium, because they reflect in our view the connectional results
better than borders that depend on genetic expression data. We
hope that future evidence will help to support one hypothesis over
another.

The Avian Brain Nomenclature Consortium also defines the sensory
input zone of trigeminal, visual, and auditory pathways as part of the
nidopallium (Reiner et al., 2004). As outlined above we were not able to

reliably separate the partly lamina-like thalamopallial input areas from
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the nonsensory nidopallial areas. However, the primary sensory com-
ponent of the nidopallium only makes up 7% of the nidopallial volume.
Despite this small number, it is important to alert the reader that our
number of associative nidopallium neurons is certainly overestimated
for all species studied.

4.1 | Do subpallial neurons numbers contribute to
associative cognitive functions?

Besides the expected difference in the number of associative pallial
neurons between corvids and noncorvids, our study also revealed a
strong association between increased numbers of nido/mesopallial
and subpallial neurons across species. This finding is in line with the
massive projections from nido- and mesopallium onto striatal territo-
ries that serve as motor output structures (Atoji & Wild, 2009; Kréner
& Guntirkin, 1999; Shanahan et al., 2013; Veenman et al., 1995). Thus,
it is possible that the high numbers of subpallial neurons in corvids
result from coordinated scaling with associative areas due to func-
tional and anatomical coupling between these areas. Importantly, the
scaling of numbers of subpallial neurons in coordination with numbers
of neurons in the associative mesopallium and nidopallium supports
the suggestion that the striatum is more than a simple sensorimotor
coordination center and is tightly involved in cognitive processes. This
overlaps with findings in mammals that demonstrate the relevance
of the striatum for diverse cognitive processes (Antzoulatos & Miller,
2011; Boot et al., 2017), along with an a essential role in selecting
between cognitively guided response options that compete with each
other (Provost et al., 2015). In contrast, we found that the number of
hippocampal as well as neurons of the arcopallium/amygdala complex
did not scale with subpallial neurons. In case of the hippocampal
formation, this is likely due to the lack of direct connections between
the subpallium and the hippocampal formation (Atoji & Wild, 2004),
removing one of the main drivers of concerted neuronal scaling. While
a fraction of arcopallium/amygdala complex neurons in specific subdi-
visions project to subpallial targets, other subdivisions are completely
void of subpallial projections (Hanics et al., 2017; Letzner et al., 2016),
possibly overshadowing a significant correlation of projection neurons.

We found that corvids possess more neurons in the hyperpallium in
comparison to pigeons and chicken, but not in comparison to ostriches.
The hyperpallium is mostly a sensory and especially visual area (Gln-
turkun, Stacho et al.,, 2017; lwaniuk & Wylie, 2020). The large size and
high neuron numbers of the ostrich hyperpallium could reflect a clade-
specific feature of paleognath birds, since all other neognath avian
species of our analysis were similar to each other, but different from
the ostrich. The existence of such a clade specific effect is supported by
data from skull endocast studies, reporting a pronounced wulst in sev-
eral paleognath species (Ashwell & Scofield, 2008; Corfield et al., 2008).

Large relative and absolute numbers of neurons in the hyperpallium
could, however, also be a visual adaptation to the specific foraging style
of ostriches. Ostriches have the largest eyes of any land vertebrate
(Boire et al., 2001; Martin et al., 2001) and fixate an item on the ground

binocularly at ca. 10 cm distance, to then produce a rapid, precise, and
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ballistic peck (Martin & Katzir, 1995). Whatever its origin, the large
hyperpallial neuron numbers in ostriches underline the importance of
area-specific analyses, since analysis restricted to total numbers of pal-
lial neurons fail to capture local peaks in numbers of neurons that might
be the neural substrate of species differences in cognitive capability.

4.2 | Associative neuron numbers in relation to
cognitive abilities in birds

A large number of behavioral experiments conducted in all three corvid
species of our study show that their cognitive skills are on par with
those found in primates (Bagotskaia et al., 2010; Balakhonov & Rose,
2017; Bird & Emery, 2009b; Dufour et al., 2012; Emery et al., 2007;
Guntarkan & Bugnyar, 2016; Smirnova et al., 2002). Although pigeons
and chicken have occasionally baffled the scientific community with
unexpected cognitive abilities (Marino, 2017; Scarfet al., 2011S, 2016),
a direct comparison to corvids reveals that, for instance, pigeons need
much longer training to reach the cognitive level of corvids and are
far less able to transfer their skills to related but different tasks or
stimulus patterns (Gunturkin, Strockens et al., 2017). As expected, we
find that pigeons and chickens rank lower than corvids both in terms
of varieties of cognitive behaviors and in numbers of pallial and asso-
ciative pallial neurons. While no experimental data on cognitive skills
have been collected so far in ostriches, a large analysis covering 2608
reports on 1018 bird species found that no field observation reported
the presence of any sort of behavioral innovation in ostriches (Overing-
ton et al., 2009). In contrast, corvids consistently rank among the most
innovative species (Overington et al., 2009). The absence of ostriches in
this collection is noteworthy since these birds are abundant in animal
parks and meat factories of industrialized countries, which generated
the majority of contributions to the behavioral innovation data bank.
Thus, we presume that ostriches rank cognitively lower in comparison
to corvids until some future study shows otherwise.

Importantly, here we find similar or even higher numbers of neu-
rons in associative pallial areas in corvids as in several primate species.
According to our study, corvid mesopallium and nidopallium combined
have between 200 and 300 million neurons per hemisphere (Figure 6,
Table 2), which is more than the 68 million neurons estimated to com-
pose one hemisphere of the prefrontal cortical region (anterior to
the corpus callosum) of the rhesus monkey (Macaca mulatta) brain,
and comparable to the 115 million neurons estimated for one hemi-
sphere of the baboon (Papio cynocephalus) prefrontal cortical region
(Gabi et al., 2010; Gabi et al., 2016). At 8% of all cortical neurons,
we predict that the entire prefrontal region of the chimpanzee (Pan
troglodytes) cortex contains fewer than 300 million neurons per hemi-
sphere (Collins et al., 2016), which would be roughly on par with our
corvid numbers. Considering that corvids and great apes perform at
ceiling levels in the cognitive tests reported (Ginturkin, Stréckens
et al., 2017), our results are compatible with our hypothesis that abso-
lute numbers of cortical neurons, and associative neurons in particular,
are amain determining factor of the cognitive capabilities of vertebrate

species.
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5 | CONCLUSION

Our inquiry into the question of what makes corvids smart shows that
corvids have particularly large numbers of neurons in the associa-
tive nido- and mesopallium compared to pigeons, chickens, and even
ostriches, which have the largest avian brain. In contrast, corvid neuron
numbers in nonassociative pallial areas are not higher than those of
ostriches. The large number of associative neurons in corvids is closely
mirrored by similar quantities in subpallial structures, making it likely
that associative pallio-striatal loops are key components of cognition
in corvids as also described in primates. We propose that while com-
parisons of total numbers of pallial neurons are informative, cognitive
capabilities of different species are more directly related to absolute
numbers of neurons in associative structures that can support flexible
and complex cognition. Future comparative studies of cognitive capa-
bilities and their neurological underpinnings should therefore focus
on associative areas separately from purely sensorimotor structures.
Thus, although complex cognitive functions obviously also depend on
many other variables like cellular morphology, connectivity patterns,
neurochemical properties, and cognition-related regulatory genetic
sequences (Audet et al., 2018; Dicke & Roth, 2016; Geng et al., 2019;
Geng et al., 2018; Goriounova & Mansvelder, 2019; Glinttirkin, Stacho
et al, 2017; Sayol et al., 2016; Wirthlin et al., 2018), we propose
that sheer large quantities of associative neurons constitute a key
component of the outstanding cognitive capabilities of both corvids

and primates.
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