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Abstract: Meta-control describes an interhemispheric response conflict that results from the
perception of stimuli that elicit a different reaction in each hemisphere. The dominant hemisphere for
the perceived stimulus class often wins this competition. There is evidence from pigeons that
meta-control results from interhemispheric response conflicts that prolong reaction time when
the animal is confronted with conflicting information. However, recent evidence in pigeons
also makes it likely that the dominant hemisphere can slow down the subdominant hemisphere,
such that meta-control could instead result from the interhemispheric speed differences. Since both
explanations make different predictions for the effect of commissurotomy, we tested pigeons in a
meta-control task both before and after transection of the commissura anterior. This fiber pathway
is the largest pallial commissura of the avian brain. The results revealed a transient phase in which
meta-control possibly resulted from interhemispheric response conflicts. In subsequent sessions
and after commissurotomy, however, the results suggest interhemispheric speed differences as a
basis for meta-control. Furthermore, they reveal that meta-control is modified by interhemispheric
transmission via the commissura anterior, although it does not seem to depend on it.
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1. Introduction

Meta-control refers to the one hemisphere taking charge of response selection when the
two hemispheres are brought into conflict [1–3]. This phenomenon was first demonstrated in
split-brain patients and healthy people [1,4], but was also later revealed in monkeys [5], chicken [6],
and pigeons [2,3,7]. It is often assumed that meta-control results from one hemisphere inhibiting
the other via the various commissures that connect the two halves of the brain at the midbrain and
telencephalic level [8,9].

Meta-control becomes especially visible in species with pronounced brain asymmetries.
Depending on the type of stimulus, one or the other hemisphere regularly gains control. Birds are
ideal subjects for these studies [10]. Their left hemisphere is superior in discrimination, categorization,
and memorization of visual patterns (chicks: [11]; quail: [12]; pigeons: [13,14]) and visuomagnetic
cues (pigeons: [15]; chicks: [16]), while their right hemisphere is superior in visually guided
interactions with emotionally charged stimuli (chicks: [17]), attentional shifts (chicks and pigeons: [18]),
social interactions (chicks: [19]), as well as in relational and spatial analyses of visual information
(chicks: [20]; pigeons: [14,21]).
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Meta-control could result from either inter-hemispheric response conflict or differences in
hemisphere-specific speed. If inter-hemispheric response conflict was the cause, situations in which
each half-brain competes to present a different response should produce longer reaction times than
non-conflicting situations [2,8]. This is because decision making with two incompatible options
usually requires a longer processing time [10]. If, however, meta-control simply results from
hemisphere-specific processing speed, the outcome would be different. The decision time would
be determined solely by the faster hemisphere, which would always win. Two competing hemispheres
would then be as fast as the faster hemisphere.

A recent study conducted by Ünver & Güntürkün [2] in pigeons collected evidence for the
inter-hemispheric response conflict model. In their study, pigeons were trained by a forced-choice
color discrimination task monocularly, and each hemisphere learned to discriminate between its
own stimulus pair. Then, under binocular conditions, the birds were exposed to two types of test
stimuli. These test stimuli were created by combining positive and negative patterns learned by each
hemisphere. If the animal had to discriminate between a stimulus pair that consisted of two positive
(left- and right-hemispheric) patterns on one pecking key and two negative patterns on the other,
the choice was easy. Both hemispheres agreed to peck the pattern combination that was positive for both
half-brains. Consequently, the animals responded quickly to this “super stimulus”. The situation was
different when each stimulus was composed of the positive pattern of one hemisphere and the negative
pattern of the other hemisphere. In the case of such an “ambiguous stimulus”, the overall pattern
signaled an interhemispheric reward history conflict. As it turned out, the ambiguous stimulus caused
a significant response delay. This makes it likely that meta-control rests mainly on an inter-hemispheric
response conflict and not on hemisphere-specific speed.

A recent study, however, proposed a different mechanism. Qian & Güntürkün [22] recorded
signals from the sensorimotor arcopallium of pigeons while the birds were conducting a color
discrimination task under monocular conditions. All birds in their study learned faster and responded
more quickly with their right eye/left hemisphere. The arcopallium not only harbors descending
premotor neurons but also commissural neurons that constitute the commissura anterior—the largest
avian interhemispheric connection at the pallial level. As shown by Letzner et al. [23], the commissura
anterior originates from the telencephalic arcopallium/amygdala-complex and contains a small cluster
of non-GABAergic sensorimotor and amygdaloid fibers that project onto a wide range of contralateral
structures such as the posterior amygdala, the sensorimotor arcopallium, as well as further sensory
and motor components of the nidopallium. We chose this commissure for our study due to these
widespread projections onto the contralateral hemisphere. Qian & Güntürkün [22] transiently blocked
the arcopallial activity of one hemisphere and recorded from the contralateral arcopallium during
color discrimination to determine the effect of left-to-right and right-to-left information transfer.
They discovered that the left hemisphere was able to modify the timing of individual activity patterns
of the neurons in the right hemisphere via asymmetrical commissural interactions. In contrast to that,
right arcopallial neurons were hardly able to alter the activity pattern of left arcopallial cells. Thus,
under conditions of interhemispheric competition, left arcopallial neurons could delay the contralateral
spike time of those in the right hemisphere. As a result, the neurons of the right hemisphere would
come too late to control a response and the left hemisphere would govern decisions. This finding
could imply that hemispheric dominance in birds is realized at least in part by time shifts of the neural
activity of one or the other hemisphere.

The studies by Ünver & Güntürkün [2] and Qian & Güntürkün [22] make contradictory predictions
of the mechanisms of meta-control. Both would assume that the commissura anterior plays a decisive
role in inter-hemispheric response conflicts but would predict different choice patterns from birds
in a meta-control task after commissurotomy. Ünver & Güntürkün [2] would infer that the loss of
the commissura anterior should reduce reaction times when presented with an ambiguous stimulus
because an inter-hemispheric response conflict could no longer result in an inter-hemispheric delay
in processing time. In contrast, Qian & Güntürkün [22] would not expect a change in reaction
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times under the ambiguous stimulus because the dominant hemisphere already determines the
response. They would, however, expect that the dominance of the left hemisphere would weaken
after commissurotomy because the left-to-right control of the neuronal spike times could no longer
be executed. To test these predictions, we conducted a meta-control study as published by Ünver &
Güntürkün [2], and subsequently transected the commissura anterior to re-test the animals with the
same task.

2. Materials and Method

2.1. Subjects

Nine naïve pigeons of unknown sex were used in the study. All pigeons were housed in single
cages with other conspecifics and maintained on a 12:12 h light–dark cycle. Their body weight was
maintained at 80–90% of their free-feeding weight by feeding diet food on weekdays and a mixture of
peas, corn, and sunflower seeds on the weekends. Water was provided ad libitum. For the monocular
sessions, velcro rings were fixed around the eyes of the pigeons using glue that was non-irritating
to the skin. Cone-shaped eye caps that were attached to the other sides of the velcro rings at their
bases and were created using cardboard. These eye caps could be easily attached and removed from
the rings surrounding the eyes for monocular testing (Figure 1). All procedures were conducted in
compliance with the guidelines for the care and use of laboratory animals and approved by the local
committee (LANUV).

Symmetry 2019, 11, x FOR PEER REVIEW 3 of 11 

 

would weaken after commissurotomy because the left-to-right control of the neuronal spike times 
could no longer be executed. To test these predictions, we conducted a meta-control study as 
published by Ünver & Güntürkün [2], and subsequently transected the commissura anterior to 
re-test the animals with the same task. 

2. Materials and Method 

2.1. Subjects 

Nine naïve pigeons of unknown sex were used in the study. All pigeons were housed in single 
cages with other conspecifics and maintained on a 12:12 h light–dark cycle. Their body weight was 
maintained at 80–90% of their free-feeding weight by feeding diet food on weekdays and a mixture 
of peas, corn, and sunflower seeds on the weekends. Water was provided ad libitum. For the 
monocular sessions, velcro rings were fixed around the eyes of the pigeons using glue that was 
non-irritating to the skin. Cone-shaped eye caps that were attached to the other sides of the velcro 
rings at their bases and were created using cardboard. These eye caps could be easily attached and 
removed from the rings surrounding the eyes for monocular testing (Figure 1). All procedures were 
conducted in compliance with the guidelines for the care and use of laboratory animals and 
approved by the local committee (LANUV).  

 
Figure 1. The stimuli used in the experiment. Super stimuli consisted of a combination of two 
positive and two negative stimuli presented to the left eye (LE) and right eye (RE) during the training 
phase. Ambiguous stimuli were created by combining a negative stimulus for one hemisphere and a 
positive stimulus for the other. Both eyes (BIN = binocular) were open during the test phase. The 
color combinations shown in the figure are merely examples of the various combinations used. 
Below are photographs showing the animals with a cap on one eye (left) or both eyes uncovered 
(right). 

2.2. Apparatus 

A custom-made operant chamber measuring 40 × 35 × 35 cm (W × D × H) in size was used for 
the experiment. The chamber was equipped with a feeder and illuminated using a house light. The 
feeder was immediately illuminated when food was presented. The stimuli (5 × 5 cm in size) were 
introduced on a TFT LCD touchscreen monitor with 1024 × 768 resolution. The monitor was placed 
on the same side of the chamber as the feeder to ensure that the pigeons could easily reach the feeder 

Figure 1. The stimuli used in the experiment. Super stimuli consisted of a combination of two positive
and two negative stimuli presented to the left eye (LE) and right eye (RE) during the training phase.
Ambiguous stimuli were created by combining a negative stimulus for one hemisphere and a positive
stimulus for the other. Both eyes (BIN = binocular) were open during the test phase. The color
combinations shown in the figure are merely examples of the various combinations used. Below are
photographs showing the animals with a cap on one eye (left) or both eyes uncovered (right).

2.2. Apparatus

A custom-made operant chamber measuring 40 × 35 × 35 cm (W × D × H) in size was used
for the experiment. The chamber was equipped with a feeder and illuminated using a house light.
The feeder was immediately illuminated when food was presented. The stimuli (5 × 5 cm in size) were
introduced on a TFT LCD touchscreen monitor with 1024 × 768 resolution. The monitor was placed
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on the same side of the chamber as the feeder to ensure that the pigeons could easily reach the feeder
immediately after pecking at the stimuli on the screen. The experimental sessions were controlled by a
custom-written MATLAB program (MathWorks, Natick, MA, USA) using the Biopsy Toolbox [24].

2.3. Procedure

Before learning the color discrimination task, all pigeons were trained in autoshaping sessions
consisting of 40 trials. In these sessions, the pigeons were made to peck on a white square presented
on the screen under monocular conditions. The white square was presented for 4 s, and food was
delivered immediately following a single peck on the white square. These sessions were conducted
according to a fixed ratio (FR1) schedule. The birds were trained in a counterbalanced manner—on one
day, only the left eye (LE) was blocked, whereas on the next day, only the right eye (RE) was blocked.
Response to the white square in >85% of the trials in two consecutive sessions per eye condition
was set as the criterion for progress to the subsequent schedules. Once the birds met this criterion,
their training progressed to a variable ratio (VR) schedule wherein they were progressively trained
with variable ratios VR2, VR4, and VR8 under monocular conditions again, with the same criterion.
All the sessions in the VR schedule consisted of 40 trials.

Once the birds met the response criterion for the VR, we commenced the color discrimination
training. Rectangles of four different colors (red, yellow, green, or blue) were used as stimuli. The color
discrimination sessions were conducted under monocular conditions, and the color combinations were
balanced among pigeons to prevent color preferences. As shown in Figure 1, they were always placed
in a compound at the upper or lower position of a larger white rectangle. Each eye of the pigeons was
exposed to a different pair of stimuli (e.g., red and yellow for the LE; blue and green for the RE). One of
these colors served as S+ and the other as S− for each eye. The pigeons had to choose between an
upper and a lower compound stimulus that each consisted of a colored and a white rectangle. Pecks on
the S+ compound were rewarded regardless of whether the peck location was on the colored or on
the white part of the compound. The same rule was applied for the S− compound. The monocular
sessions were conducted in a counterbalanced manner, similar to the autoshaping sessions.

The stimuli were presented for 4 s. A single peck on the S+ compound immediately activated
the feeder for 2 s, whereas a peck on the S− compound resulted in switching off the house lights
for 5 s and playing a loud noise for 1 s. Once the birds responded to the S+ compound in >85% of
the trials in two consecutive sessions for each eye condition, the number of trials per session was
increased to 200 in steps of 20. The criteria that was applied in each step was that the pigeons had to
make at least 85% correct choices (responses to the S+ compound) for each eye condition in a single
session. As the number of trials in each session was increased, the reward ratio (responses to S+) was
decreased in steps of 10% until reaching 40%. This procedure was employed to prevent extinction
learning in subsequent catch trials. As a final step, a new stimulus pair, a white (S+) square and a
gray (S−) square, were introduced. Because the birds had already been trained to respond to the
white square during the autoshaping sessions, we expected them to be able to rapidly discriminate
between this new stimulus pair. This white/gray “dummy” discrimination procedure was necessary
to maintain the birds’ responses during the critical test sessions that included catch trials. In the catch
trials, the colored stimuli were re-arranged to create “super” and “ambiguous” stimuli that were not
rewarded. Each of the final sessions consisted of 200 trials, with 80% of the stimuli being presented
as white (S+) and gray (S−) dummy stimuli. As outlined above, both S+ (the S+ of the LE and the S+
of the RE) on one pecking key and both S− on the other key were termed super stimuli. Unlike the
other sessions, the critical test sessions were performed under binocular conditions. The gray/white
stimuli represented a common associative background for both stimuli. This was not applied to the
ambiguous stimuli. On each key, the S+ of one hemisphere was always combined with the S− of
the other hemisphere. The proportion of catch trials in the final session was 20% (i.e., the number
of catch trials was 40, with 20 being ambiguous and 20 being super stimuli). The remaining trials
consisted of the white/gray stimuli pair (the number of white/gray stimuli was 160). No feedback
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for the catch trials was available, whereas the white/gray stimuli discrimination had a 40% reward
probability. Following the first critical test session that included catch trials, the pigeons were further
trained using the well-known training stimuli under monocular conditions. These sessions using
the well-known training stimuli between each critical test session were conducted because it was
necessary to maintain the pigeons’ response at a stable level during the subsequent critical test sessions.
Therefore, this sequence was repeated until enough catch trial responses were collected.

After six sessions at most of testing for meta-control, pigeons underwent a commissurotomy
operation. After a two-week recovery period, the same task and procedure were applied, and data
were collected.

2.4. Surgery

Before surgery, nine birds participating in the experiment were given a mixture of ketamine
(ketamine hydrochloride, 100 mg/mL; Zoetis, Berlin, Germany) and xylazine (xylazine hydrochloride,
23.32 mg/mL, methyl-4-hydroxybenzoate, 1.5 mg/mL; Bayer Vital, Leverkusen, Germany) by
intramuscular injection (7:3 ratios, 0.12 mL/100 g body weight). The anesthetized birds were placed
on a warming pad in a stereotaxic device. Their heads were fixed at a 45◦ angle in the head holder
according to the coordinates of the pigeon brain atlas [25]. Prior to the commissurotomy, the scalp was
opened and a window was opened in the skull with a drill, centered at the anterior 7.75 and lateral
0.0 coordinates. Then, the dura mater was removed. The main vessel in the gap between the two
hemispheres was delicately pulled aside with a hand-made hook. Finally, a 2-mm-wide, 0.3 mm thick
blade was slowly lowered into the region with the following coordinates: Anterior 7.75, lateral 0.0 at
a depth of 9.0 mm from the surface of the brain [25]. The blade was lowered in increments of 1 mm,
with a 2 min pause between each increment. Thus, the risk of damage to the brain due to the pressure
caused by the blade was minimized. At the end of the operation, the knife was removed in the same
manner, i.e., by lifting 1 mm every 2 min. The skin was stitched after a medical sponge was placed
on the operation area. Finally, a painkiller was sprayed over the operation area and an antibacterial
powder (Tyrasor; Engelhard Arzneimittel, Niederdorfleben, Germany) was applied. In addition,
an intramuscular painkiller (Rimadyl, 0.04 mL/100 g body weight; Pfizer, GmbH, Münster, Germany)
was administered. The pigeons were kept in their individual cages for one week to allow them to
overcome the effects of the operation. Then, the tests were conducted.

2.5. Histology

The pigeons were deeply anesthetized with equithesin (0.55 mL/100 g body weight) and
perfused with 4% paraformaldehyde (VWR Prolabo Chemicals, Leuven, Belgium) after the last
post-operation tests. The brain was removed, immersed in gelatin (Merck, Darmstadt, Germany) and
sectioned into 40-µm frontal slices using a freezing microtome (Leica Microsystems Nussloch GmbH,
Nussloch, Germany). Sections were mounted, nissl and klüver-barrera stained, and the success of the
commissurotomy was verified microscopically. In all nine birds, the commissura anterior was verified
to be completely sectioned (Figure 2). In some animals the blade had been successfully lowered along
the midline (Figure 2b), in others it was slightly off the midline and had damaged the medial most
parts of the hemispheres in the medial meso- and nidopallium, as well the area above the commissura
anterior (Figure 2a). These are not areas associated with the visual system and we could not see any
correlation between our histological verifications and our behavioral results.
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Figure 2. A nissl (a) and a nissl/klüver-barrera (b) stained frontal section of two pigeons with
transections of the commissura anterior. The straight arrows point to the tissue rupture resulting
from the passing of the blade, while the broken arrows indicate remaining fibers of the commissura.
Note that in (a) the blade has damaged the area above the commissure since it was slightly off the
midline. This is not the case in (b). Scale bar in (b) also applies to (a).

3. Results

Two variables were important in studying the effect of the commissurotomy on meta-control. First,
how many individuals display significant meta-control before vs. after commissurotomy? Meta-control
in our task is defined as a significantly higher number of choices that are dominated by one hemisphere
being faced with an ambiguous pattern. Second, how did the reaction times to ambiguous- and
super-stimuli change after the commissurotomy?

Meta-control: A meta-control effect was observed in three out of nine birds before
commissurotomy (for each individual: chi square test, p <0.05). In two birds the right eye dominated
the decisions of the animal, and in one bird the left eye was dominant. Overall, this number was not
sufficient to produce a significant meta-control effect at the population level (paired-sample t-test,
t = 0.246, p = 0.812, n = 9). These three birds all ceased to demonstrate meta-control after
commissurotomy. On the other hand, post-commissurotomy meta-control was observed in two
different animals (one left, one right eye) that had not exhibited meta-control before the operation
(chi square test, each p < 0.05). During the post-commissurotomy period, no significant meta-control at
the population level was observed (paired-sample t-test, t = 0.939, p = 0.375, n = 9).

Reaction times: When first confronted with the ambiguous stimulus, the birds showed
significantly higher reaction times to the ambiguous (1.14 s) than to the super stimulus (1.03 s)
(paired-sample t-test, t = 2.540, p = 0.035, n = 9). In the second and subsequent sessions, however,
this effect disappeared, such that the reaction time responses to super and ambiguous stimuli were
no longer significantly different from each other (super stimulus: 1.07 s; ambiguous stimulus: 1.1 s;
(paired-sample t-test, t = 0.479, p = 0.646, n = 8)). There were no significant reaction time differences to
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the super stimulus between session 1 and sessions 2–6 (paired sample t-test; t = 0.755, p = 0.475, n = 8).
The same applied to the ambiguous stimulus (paired-sample t-test; t = 0.033, p = 0.975, n = 8). Note that
the average values of sessions 2–6 were derived from 8 birds, since one pigeon stopped working on the
task after session 1 (and then restarted after surgery). Similarly, in the post-surgery tests, no significant
differences in the reaction times between super and ambiguous signals were observed (super stimulus:
1.24 s; ambiguous stimulus: 1.29 s; (paired-sample t-test, t = 0.614, p = 0.556, n = 9)). Moreover, there
was no significant difference between the response times to the two stimulus types in the pre-surgery
sessions (excluding session 1) and post-surgery sessions (mean of super stimulus sessions 2–6: 1.07 s;
post-surgery session: 1.15 s; (paired-sample t-test, t = 0.680, p = 0.518, n = 8); mean of ambiguous
stimulus sessions 2–6: 1.1 s; post-surgery session: 1.22 s; (paired-sample t-test, t = 1.097, p = 0.309,
n = 8)) (Figure 3).
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Figure 3. Average reaction times of subjects to ambiguous and super stimuli during sessions prior to
the commissurotomy and in the first session after the commissurotomy. Significant differences are
indicated by an asterisk (p <0.05). Error bars are ±1 SEM. Note that the averages of sessions 2–6 were
derived from 8 birds, because one pigeon stopped working on the task after session 1, but restarted
after surgery.

4. Discussion

Meta-control can occur when the two hemispheres compete with each other to produce a
hemisphere-specific response [1,2,4,5,7]. In studies with birds working on color discrimination tasks,
the dominant hemisphere is usually the left [10,11,13]. Concomitantly, there is some evidence for a
higher incidence of left-hemispheric meta-control in such tasks with pigeons [7]. The present study
tested two different possible mechanisms of meta-control. One of these assumes that meta-control
results from each hemisphere inhibiting the other [8]. Such a mechanism should cause conflicting
(in our case ambiguous) stimuli to produce longer processing times, resulting in longer reaction times.
A recent study found evidence supporting this prediction, and therefore suggested that meta-control
results from the interhemispheric conflict [2]. An electrophysiological study, however, found evidence
for a different mechanism: Qian & Güntürkün [22] discovered that arcopallial neurons of the left
hemisphere dominate the response of the animal during color discrimination through a faster activation
of motor responses. Furthermore, the left hemisphere controls the right hemispheric spike times, and is
thus able to delay reaction times of the other hemisphere. This effect would increase the advantage of
the left hemisphere. These findings make different predictions for the effect of the commissurotomy on
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meta-control. The mechanism based on the interhemispheric conflict would imply that a section of the
commissura anterior should reduce reaction times to ambiguous stimuli (no commissural exchange
→ no interhemispheric conflict), whereas the model based on hemisphere specific speed would not
predict post-surgery changes in reaction time to ambiguous stimuli (no commissural exchange→ no
change in hemisphere-specific speed). At the same time, the results of Qian & Güntürkün [22] suggest
that the advantage of the left hemisphere would be smaller after commissurotomy (no commissural
exchange→ no possibility to further delay response execution of the right hemisphere). Our findings
suggest that the birds only experience interhemispheric conflict on the first session with ambiguous
stimuli, and the effect disappears in the following sessions. A subsequent commissurotomy does not
alter reaction times to ambiguous stimuli but does modify meta-control. Overall, our data would be
compatible with a model according to which interhemispheric conflict occurs in a short, initial period,
but then gives way to lateralized reaction patterns determined by hemisphere-specific speed.

As visible in Figure 3, reaction times to super and ambiguous stimuli were the most different in
the first session in which the animals were first presented these two stimulus types under binocular
conditions. However, in subsequent sessions reaction times became increasingly similar. Ünver &
Güntürkün [2] had based their conclusion of interhemispheric conflict on the first session after
introducing ambiguous stimuli. This conclusion may remain valid but is obviously restricted to
this initial session. In subsequent sessions, a different mechanism seems to prevail. It is indeed
conceivable that the animals quickly learned about the absence of negative or positive feedback
when responding to the ambiguous stimuli. It is known that pigeons are extremely sensitive to
reward alterations in operant categorization tasks, and subsequently tend to bias their choices towards
initially favored alternatives [26]. Similar findings were also observed in studies with monkeys [27,28].
This makes it likely that our commissurotomy was performed at a point in time in which the pigeons
were no longer pondering response conflicts but instead biased their choices according to mechanisms
based on hemisphere-specific speed. Consequently, response times to ambiguous stimuli were not
altered by commissurotomy.

This scenario is compatible with the explanation that each hemisphere rushes with its own
hemisphere-specific speed to motor areas. During color discrimination, the left hemisphere usually
produces faster reaction times. This has been observed in various studies with pigeons [29] and
other birds [17,30]. This was also observed by Qian & Güntürkün [22] when recording from the
pigeon arcopallium during color discrimination. This study also offers a mechanistic explanation
of this observation by revealing that the left hemisphere can modify the spike time of the right
hemisphere. Thus, under conditions of conflict, the left hemisphere could delay the right hemispheric
response speed, thereby accelerating its own advantage. From this point of view, a transection of the
commissura anterior should reduce, but not completely terminate the left hemispheric superiority.
Indeed, we observed major alterations of meta-control after surgery. Usually, an individually significant
extent of meta-control is observed in only a fraction of pigeons [2,3,7]. With the procedure used in this
study, it was mostly the left hemisphere that evinced meta-control [2,7]. In the current experiment,
three out of nine birds demonstrated meta-control before commissurotomy (two left hemispheric,
one right hemispheric). This is a typical result pattern [2,7]. After transecting the commissura anterior,
however, all three birds lost their hemisphere-specific advantage. Instead, two other birds displayed
significant meta-control (one left, one right). Although this is certainly not a strong proof of the
conclusion of Qian & Güntürkün [22], it is conceivable that the changes observed in meta-control
in our nine pigeons resulted from the loss of a left hemispheric advantage that resulted in biased
interhemispheric interactions. If indeed neuronal speed differences cause the bias towards the right
eye in metacontrol studies, the large individual differences may result from the fact that neurons show
within the pigeon’s visual system substantial latency differences between individual birds [22,31–33].

It is known that the commissura anterior connects with the anterior and intermediate arcopallium.
These structures project onto a wide cluster of visual and sensorimotor areas. Our study focused on
the contribution of the commissura anterior to visual asymmetries. However, further commissural
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systems may also play a role in metacontrol since studies of both chicks [34] and pigeons [35–37]
suggested that subpallial commissures also play key roles in visually-guided lateralized behavior.
The supraoptic decussation (DSO) is one such subpallial connection, and is known to be responsible
for interocular transfer during visual discrimination [38]. This may be due to the indirect connection
of the DSO to telencephalic visual structures such as Wulst. More recently, it has been shown that the
nucleus of the lateral ponto-mesencephalic tectum (nLPT), a midbrain structure, contains GABAergic
neurons and its projections terminate in the contralateral optic tectum (TeO) via the commissura
tectalis [39]. Therefore, this midbrain commissure may also play a crucial role during meta-control.
Thus, the present study must be complemented by further experiments to reveal the full scenario of
interhemispheric interactions of lop-sided bird brains.

Although our study was centered on the mechanisms of meta-control, it might also offer some
more general insights on the behavior of organisms with lateralized brains. A key problem of these
species is the production of a single response from two asymmetrically specialized hemispheres.
Our results suggest that the default option in such situations could be to let both hemispheres compete
based on hemisphere-specific processing speed. Because the dominant hemisphere for a certain
stimulus class usually produces faster responses [22], the most competent half-brain would primarily
determine the response. The commissural slowing mechanism discovered by Qian & Güntürkün [22]
would amplify this interhemispheric speed difference to ensure that the dominant hemisphere controls
the overall response.

Author Contributions: Conceptualization: Q.X. and O.G.; designed experiment: Q.X. and O.G.; performed
experiment: E.Ü.; statistical analysis: E.Ü. and O.G.; manuscript preparation: E.Ü. and O.G.; funding acquisition
and project supervision: O.G. All authors revised and approved the paper.

Acknowledgments: We are grateful for the support of Annika Simon during surgery and the conduct of the
histological procedure. We also thank Felix Ströckens and Sarah von Eugen for help during documentation of
histological results. Supported by the Deutsche Forschungsgemeinschaft through SFB 874.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Levy, J.; Trevarthen, C. Metacontrol of hemispheric function in human split-brain patients. J. Exp.
Psychol. Hum. 1976, 2, 299–312. [CrossRef]

2. Ünver, E.; Güntürkün, O. Evidence for interhemispheric conflict during meta-control in pigeons.
Behav. Brain Res. 2014, 270, 146–150. [CrossRef] [PubMed]

3. Adam, R.; Güntürkün, O. When one hemisphere takes control: Metacontrol in pigeons (Columba livia).
PLoS ONE 2009, 4, e5307. [CrossRef] [PubMed]

4. Urgesi, C.; Bricolo, E.; Aglioti, S.M. Hemispheric metacontrol and cerebral dominance in healthy individuals
investigated by means of chimeric faces. Cogn. Brain Res. 2005, 24, 513–525. [CrossRef] [PubMed]

5. Kavcic, V.; Fei, R.; Hu, S.; Doty, R.W. Hemispheric interaction, meta-control, and mnemonic processing in
split-brain macaques. Behav. Brain Res. 2000, 111, 71–82. [CrossRef]

6. Vallortigara, G. Comparative neuropsychology of the dual brain: A stroll through animals’ left and right
perceptual worlds. Brain Lang. 2000, 73, 189–219. [CrossRef]

7. Freund, N.; Valencia-Alfonso, C.E.; Kirsch, J.; Brodmann, K.; Manns, M.; Güntürkün, O. Asymmetric
top-down modulation of ascending visual pathways in pigeons. Neuropsychologia 2016, 83, 37–47. [CrossRef]
[PubMed]

8. Chiarello, C.; Maxfield, L. Varieties of interhemispheric inhibition, or how to keep a good hemisphere down.
Brain Cogn. 1996, 30, 81–108. [CrossRef]

9. Zeier, H.J.; Karten, H.J. Connections of the anterior commissure in the pigeon (Columba livia). J. Comp. Neurol.
1973, 150, 201–216. [CrossRef]

10. Rogers, L.J.; Vallortigara, G.; Andrew, R.J. Divided Brains: The Biology and Behaviour of Brain Asymmetries;
Cambridge University Press: Cambridge, UK, 2013.

11. Rogers, L.J. Asymmetry of brain and behavior in animals: Its development, function, and human relevance.
Genesis 2014, 52, 555–571. [CrossRef]

http://dx.doi.org/10.1037/0096-1523.2.3.299
http://dx.doi.org/10.1016/j.bbr.2014.05.016
http://www.ncbi.nlm.nih.gov/pubmed/24844753
http://dx.doi.org/10.1371/journal.pone.0005307
http://www.ncbi.nlm.nih.gov/pubmed/19390578
http://dx.doi.org/10.1016/j.cogbrainres.2005.03.005
http://www.ncbi.nlm.nih.gov/pubmed/16099363
http://dx.doi.org/10.1016/S0166-4328(00)00141-8
http://dx.doi.org/10.1006/brln.2000.2303
http://dx.doi.org/10.1016/j.neuropsychologia.2015.08.014
http://www.ncbi.nlm.nih.gov/pubmed/26282274
http://dx.doi.org/10.1006/brcg.1996.0006
http://dx.doi.org/10.1002/cne.901500207
http://dx.doi.org/10.1002/dvg.22741


Symmetry 2019, 11, 124 10 of 11

12. Valenti, A.; Sovrano, V.A.; Zucca, P.; Vallortigara, G. Visual lateralisation in quails (Coturnix coturnix japonica).
Laterality 2003, 8, 67–78. [CrossRef] [PubMed]

13. Güntürkün, O.; Kesch, S. Visual lateralization during feeding in pigeons. Behav. Neurosci. 1987, 101, 433–435.
[CrossRef] [PubMed]

14. Yamazaki, Y.; Aust, U.; Huber, L.; Hausmann, M.; Güntürkün, O. Lateralized cognition: Asymmetrical
and complementary strategies of pigeons during discrimination of “human concept”. Cognition 2007, 104,
315–344. [CrossRef] [PubMed]

15. Prior, H.; Wiltschko, R.; Stapput, K.; Güntürkün, O.; Wiltschko, W. Visual lateralization and homing in
pigeons. Behav. Brain Res. 2004, 154, 301–310. [CrossRef]

16. Rogers, L.J.; Munro, U.; Freire, R.; Wiltschko, R.; Wiltschko, W. Lateralized response of chicks to magnetic
cues. Behav. Brain Res. 2008, 186, 66–71. [CrossRef]

17. Rogers, L.J. Development and function of lateralization in the avian brain. Brain Res. Bull. 2008, 76, 235–244.
[CrossRef]

18. Diekamp, B.; Regolin, L.; Güntürkün, O.; Vallortigara, G. A left-sided visuospatial bias in birds. Curr. Biol.
2005, 15, R372–R373. [CrossRef]

19. Vallortigara, G.; Andrew, R.J. Differential involvement of right and left hemisphere in individual recognition
in the domestic chick. Behav. Proc. 1994, 33, 41–58. [CrossRef]

20. Vallortigara, G.; Pagni, P.; Sovrano, V.A. Separate geometric and non-geometric modules for spatial
reorientation: Evidence from a lopsided animal brain. J. Cogn. Neurosci. 2004, 16, 390–400. [CrossRef]

21. Pollonara, E.; Guilford, T.; Rossi, M.; Bingman, V.P.; Gagliardo, A. Right hemisphere advantage in the
development of route fidelity in homing pigeons. Anim. Behav. 2017, 123, 395–409. [CrossRef]

22. Xiao, Q.; Güntürkün, O. Asymmetrical commissural control of the subdominant hemisphere in pigeons.
Cell Rep. 2018, 25, 1171–1180. [CrossRef] [PubMed]

23. Letzner, S.; Simon, A.; Güntürkün, O. Connectivity and neurochemistry of the commissura anterior of the
pigeon (Columba livia). J. Comp. Neurol. 2016, 524, 343–361. [CrossRef] [PubMed]

24. Rose, J.; Otto, T.; Dittrich, L. The Biopsychology-Toolbox: A free, open-source Matlab-toolbox for the control
of behavioral experiments. J. Neurosci. Meth. 2008, 175, 104–107. [CrossRef] [PubMed]

25. Karten, H.J.; Hodos, W. A Stereotaxic Atlas of the Brain of the Pigeon: Columba Livia; Johns Hopkins Press:
Baltimore, MD, USA, 1967.

26. Stüttgen, M.; Yildiz, A.; Güntürkün, O. Adaptive criterion setting in perceptual decision making. J. Exp.
Anal. Behav. 2011, 96, 155–176. [CrossRef] [PubMed]

27. Feng, S.; Holmes, P.; Rorie, A.; Newsome, W.T. Can monkeys choose optimally when faced with noisy stimuli
and unequal rewards? PLoS Comput. Biol. 2009, 5, e1000284. [CrossRef] [PubMed]

28. Teichert, T.; Ferrara, V.P. Suboptimal integration of reward magnitude and prior reward likelihood in
categorical decisions by monkeys. Front. Neurosci. 2010, 4, 1–13. [CrossRef] [PubMed]

29. Güntürkün, O. Lateralization of visually controlled behavior in pigeons. Physiol. Behav. 1985, 34, 575–577.
[CrossRef]

30. Güntürkün, O. Avian visual lateralization: A review. Neuroreport 1997, 8, 3–11.
31. Verhaal, J.; Kirsch, J.A.; Vlachos, I.; Manns, M.; Güntürkün, O. Lateralized reward-associated visual

discrimination in the avian entopallium. Eur. J. Neurosci. 2012, 35, 1337–1343. [CrossRef]
32. Folta, K.; Troje, N.; Güntürkün, O. Timing of ascending and descending visual signals predicts the response

mode of single cells in the thalamic nucleus rotundus of the pigeon (Columba livia). Brain Res. 2007, 1132,
100–109. [CrossRef]

33. Folta, K.; Diekamp, B.; Güntürkün, O. Asymmetrical modes of visual bottom-up and top-down integration
in the thalamic nucleus rotundus of pigeons. J. Neurosci. 2004, 24, 9475–9485. [CrossRef] [PubMed]

34. Parsons, C.H.; Rogers, L.J. Role of the tectal and posterior commissures in lateralization of the avian brain.
Behav. Brain Res. 1993, 54, 153–164. [CrossRef]

35. Güntürkün, O.; Böhringer, P.G. Lateralization reversal after intertectal commissurotomy in the pigeon.
Brain Res. 1987, 408, 1–5. [CrossRef]

36. Skiba, M.; Diekamp, B.; Prior, H.; Güntürkün, O. Lateralized interhemispheric transfer of color cues: Evidence
for dynamic coding principles of visual lateralization in pigeons. Brain Lang. 2000, 73, 254–273. [CrossRef]
[PubMed]

http://dx.doi.org/10.1080/713754470
http://www.ncbi.nlm.nih.gov/pubmed/15513216
http://dx.doi.org/10.1037/0735-7044.101.3.433
http://www.ncbi.nlm.nih.gov/pubmed/3606815
http://dx.doi.org/10.1016/j.cognition.2006.07.004
http://www.ncbi.nlm.nih.gov/pubmed/16905127
http://dx.doi.org/10.1016/j.bbr.2004.02.018
http://dx.doi.org/10.1016/j.bbr.2007.07.029
http://dx.doi.org/10.1016/j.brainresbull.2008.02.001
http://dx.doi.org/10.1016/j.cub.2005.05.017
http://dx.doi.org/10.1016/0376-6357(94)90059-0
http://dx.doi.org/10.1162/089892904322926737
http://dx.doi.org/10.1016/j.anbehav.2016.11.019
http://dx.doi.org/10.1016/j.celrep.2018.10.011
http://www.ncbi.nlm.nih.gov/pubmed/30380409
http://dx.doi.org/10.1002/cne.23858
http://www.ncbi.nlm.nih.gov/pubmed/26179777
http://dx.doi.org/10.1016/j.jneumeth.2008.08.006
http://www.ncbi.nlm.nih.gov/pubmed/18765252
http://dx.doi.org/10.1901/jeab.2011.96-155
http://www.ncbi.nlm.nih.gov/pubmed/21909162
http://dx.doi.org/10.1371/journal.pcbi.1000284
http://www.ncbi.nlm.nih.gov/pubmed/19214201
http://dx.doi.org/10.3389/fnins.2010.00186
http://www.ncbi.nlm.nih.gov/pubmed/21151367
http://dx.doi.org/10.1016/0031-9384(85)90051-4
http://dx.doi.org/10.1111/j.1460-9568.2012.08049.x
http://dx.doi.org/10.1016/j.brainres.2006.11.034
http://dx.doi.org/10.1523/JNEUROSCI.3289-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15509734
http://dx.doi.org/10.1016/0166-4328(93)90074-Z
http://dx.doi.org/10.1016/0006-8993(87)90351-9
http://dx.doi.org/10.1006/brln.2000.2306
http://www.ncbi.nlm.nih.gov/pubmed/10856177


Symmetry 2019, 11, 124 11 of 11

37. Keysers, C.; Diekamp, B.; Güntürkün, O. Evidence for physiological asymmetres in the phasic intertectal
interactions in the pigeon (Columba livia) and their potential role in brain lateralisation. Brain. Res. 2000, 852,
406–413. [CrossRef]

38. Watanabe, S. Interhemispheric transfer of visual discrimination in pigeons with supraoptic decussation
(DSO) lesions before and after monocular learning. Behav. Brain Res. 1985, 17, 163–170. [CrossRef]

39. Stacho, M.; Letzner, S.; Theiss, C.; Manns, M.; Güntürkün, O. A GABAergic tecto-tegmento-tectal pathway
in pigeons. J. Comp. Neurol. 2016, 524, 2886–2913. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0006-8993(99)02192-7
http://dx.doi.org/10.1016/0166-4328(85)90041-5
http://dx.doi.org/10.1002/cne.23999
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Method 
	Subjects 
	Apparatus 
	Procedure 
	Surgery 
	Histology 

	Results 
	Discussion 
	References

