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A community-based transcriptomics
classification and nomenclature of neocortical

cell types

To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do
so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy

of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time,
systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of
being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond
to cell types previously defined by morphological or physiological criteria and that appear conserved across
cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based
taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized
nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different
approaches, developmental stages and species. A community-based classification and data aggregation

model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This
community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases

in other parts of the body.
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Classifications of cortical cell types:
from Cajal to the Petilla Convention
The conceptual foundation of modern
biology is the cell theory of Virchow,

which described the cell as the basic unit

of structure, reproduction and pathology

of biological organisms'. This idea, which
arose from the use of microscopes by
Leeuwenhoek, Hooke, Schleiden and
Schwann, among others, generated the need
to build catalogs of the cellular components
of tissues as the first step toward studying
their structure and function. As with
species, these cell catalogs, or atlases, can be

ideally systematized into ‘cell taxonomies,
classifying groups of cells based on shared
characteristics and grouping them into taxa
with ranks and a hierarchy. Taxonomies
are important: they provide a conceptual
foundation for a field and also enable the
systematic accumulation of knowledge.
Essential to this effort is the clear definition
of cell type, normally understood as cells
with shared phenotypic characteristics.
Virchow’s cell theory was introduced
to neuroscience by Cajal, whose ‘neuron
doctrin€’ postulated that the structural unit
of the nervous system was the individual

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

neuron®. Since then, generations of
investigators have described hundreds of cell
types in nervous systems of different species.
This effort has been particularly arduous

in the cerebral cortex (or neocortex), the
largest part of the brain in mammals and the
primary site of higher cognitive functions.
The mammalian neocortex has a thin
layered structure, composed of mixtures of
excitatory and inhibitory neurons arranged
in circuits of a forbidding complexity, called
“impenetrable jungles” by Cajal’. This basic
structure is very similar in different cortical
areas and in different species, which has
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given rise to the possibility that there is a
‘canonical’ cortical microcircuit'”’, replicated
during evolution, which underlies all
cortical function.

After more than a hundred years of
sustained progress, it is clear that neocortical
neurons and glial cells, like cells in any
tissue, belong to many distinct types.
Different cell types likely play discrete
roles in cortical function and computation,
making it important to characterize and
describe them accurately and in their
absolute and relative numbers. Towering
historical figures like Cajal, Lorente de N6
and Szentagothai, among others, proposed
classifications of cortical cells based on their
morphologies as visualized with histological
stains**’ (Fig. 1a—c). These anatomical
classifications described several dozen types
of pyramidal neurons, short-axon cells
and glial cells, and they were subsequently
complemented by morphological accounts
of additional cortical cell types by many
researchers'""'?, but without arriving at a
clear consensus as to the number or even the
definition of a cortical cell type.

Over the last few decades, the
introduction of new morphological,
ultrastructural, immunohistochemical and
electrophysiological methods, new molecular
markers, and a growing appreciation of the
developmental origins of distinct neuronal
subtypes (Fig. 1d-h), have provided
increasingly finer phenotypic measurements
of cortical cells and enabled new efforts to
classify them more quantitatively, using
supervised or unsupervised methods such
as cluster analysis'*~'°. A community effort
to classify neocortical inhibitory cells was
attempted at the 2005 Petilla Convention,
held in Cajal’s hometown in Spain, and led
to a common standardized terminology
describing the anatomical, physiological
and molecular features of neocortical
interneurons'’. While useful, this fell
short of providing a classification and
working framework that investigators could
incorporate into their research. One reason
why this early effort failed was because the
datasets for phenotypically characterizing
cortical neurons were small. Indeed, many of
the early studies are based on characterizing
dozens or at most hundreds of neurons,
small samples from the nearly 20 billion in
human neocortex'®.

An outcome of the Petilla Convention
was the realization that there was not yet a
single method that captured the inherently
multimodal nature of cell phenotypes and
could serve as a standard for classification.
While most researchers accepted the
existence of cell types that could be
measured and defined independently
by different methods, there was no

agreement as to which would form an
optimal basis for classification. In principle,
many criteria can be used, including

(i) anatomical or connectivity-based
features'?, (ii) parametrization of intrinsic
electrophysiological properties?, (iii)
combination of structural and physiological
criteria’>?, (iv) molecular markers'***>°, (v)
developmental origins®>¥, (vi) epigenetic
attractor states™ or (vii) evolutionary
approaches identifying homology across
species”™. Ideally, these classifications
should converge and agree, or at least
substantially overlap. Indeed, there is
substantial concordance among categories
based on anatomical, molecular and
physiological criteria'>***'=**, but it has not
been easy to combine these approaches
into a unified taxonomy. There are
substantial differences between researchers
in assigning neurons to particular types

in the literature, and even experts often
disagree on what constitutes ground truth.
For example, while most publications agree
on what a chandelier cell is, the concept of
basket cells, a major subtype of inhibitory
neuron, is much less clear™.

This uncertainty is explained and
exacerbated by technical challenges:
conventional approaches have been
laborious, low-throughput, frequently
non-quantitative and generally plagued by
an inability to sample cells in standardized
and systematic ways. Thus, setting aside
debates about the importance of various
criteria and the nature or even existence
of discrete cell types, it is not surprising
that the cell-type problem has remained
challenging.

Transcriptomics: a new framework for
classifying cortical cell types

Recent advances in high-throughput
single-cell transcriptomics (scRNAseq)
have changed the paradigm of cellular
classification, offering a new quantitative
genetic framework®~"". These approaches
measure the expression profiles of thousands
of genes from individual cells in large
numbers, at relatively high speed and low
cost. Related methods in epigenomics can
identify sites of methylation and putative
gene transcriptional regulation, essential to
cell function and state. These new methods
are an outcome from the methodological,
conceptual and economic revolution
created by the Human Genome Project*
and have flourished with support from

the BRAIN Initiative’>*’. With genomes in
hand, it is now feasible to generate entire
transcriptomes (which include the sequence
and structure of transcripts) from tissues
and to scale these methods for amplifying
RNA in single cells. Initially limited to only

a few hundred cells per experiment, effective
new methods have emerged for profiling
thousands of cells or nuclei at a time**~*%.
With simultaneous computational advances
for analyzing large sequence-based data**,
it is now possible to systematically

classify and characterize the diversity of
neural cells in any tissue, including the
neocortex (Fig. 2).

Conceptually, as much as the genome
is the internal genetic description for each
species, the transcriptome, as the complete
set of genes being expressed, provides an
internal code that can describe each cell
within an organism in a spatiotemporal
context. Practically, the scale of scRNAseq
promises near-saturating analysis of
complex cellular brain regions like the
neocortex, providing, for the first time, a
comprehensive and quantitative description
of cellular diversity and the prospect of
simplifying tissue cell composition to a finite
number of cell types and states defined by
statistical clustering. Importantly, however,
these transcriptionally defined clusters
represent a probabilistic description of cell
types in a high-dimensional landscape of
gene expression across all cells in a tissue,
rather than a definition based on a small set
of necessary and sufficient cellular markers
or other features (see below).

The scale, precision and information
content of these current methods now far
outpace other classical methods of cellular
phenotyping in neuroscience and have the
potential to approach the complete, accurate
and permanent (CAP) criteria cited by
Brenner as the gold standard in biological
science’'. Indeed, major efforts now aim
to generate a complete description of cell
types based on molecular criteria across
the neocortex (Allen Institute for Brain
Science**"’), the whole brain (the National
Institutes of Health (NIH) BRAIN Initiative
Cell Census Network®?) and even the whole
body (the Human Cell Atlas™). Also, as the
Human Genome Project offered a means for
comparative analysis of orthologous genes
across species, these efforts could define
all or most cell types and states in humans
and model organisms, with the possibility
of extending them to a variety of species
to understand the evolution of cell-type
diversity. These large investments have
the potential for a transformative effect on
neuroscience, which will be accelerated by
a formalization of a molecular classification
and its adoption by the community. They
also hold promise for the development
of methods for querying circuit function
by providing tools for the targeting and
manipulation of particular subtypes.

Transcriptomic classification offers
the following advantages as a framework
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Fig. 1| Non-transcriptomics cortical cell-type classifications. a,b, Morphological characterization and classification of neurons (a) and glial cells (b) by
Ramaén y Cajal (1904)%. ¢, Diagram showing the connections of different types of interneurons with pyramidal cells. Adapted from Szentagothai (1975)°. d,
Definition of GABAergic interneuron classes based on non-overlapping and combinatorial marker gene expression. e, Correlation of firing properties with
class markers. f, Cortical cell type classification based on intrinsic firing properties (Petilla convention). g, Complex relationships between cellular morphology,
marker-gene expression and intrinsic firing properties based on multimodal analysis. h, Comprehensive morphological and physiological classifications of
cortical cell types. Images in a,b reprinted with permission from ref. 4, Cajal Institute; in ¢, adapted with permission from ref. °, Elsevier; in d, adapted with
permission from ref. 2°, Oxford Univ. Press; in e, adapted with permission from ref. %, Society for Neuroscience; in f and g, adapted with permission from

refs. 7%, respectively, Springer Nature; in h, adapted with permission from ref. %, Cell Press.
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for bounding the problem of cellular

diversity™—:

1. High-throughput transcriptomics is
very effective at allowing a systematic,
comprehensive analysis of cellular di-
versity in complex tissues. Its quantita-
tive and high-throughput nature enables
the adoption of rigorous definitions
and criteria using datasets from tens of
thousands to millions of cells.

2. The genes expressed by a cell during its
development and maturity ultimately
underlie its structure and function, and
so the transcriptome offers predictive
power based on interpreting gene func-
tion. Other cellular phenotypes, includ-
ing morphology, are in part encoded by
genes, rather than completely independ-
ent defining criteria”.

3. A molecular definition of cell types
allows the identification of cell-type
markers and the creation of genetic
tools to target, label and manipulate
specific cell types®®™, thereby provid-
ing the means to standardize datasets
obtained by different researchers.

4. Transcriptomic data can also provide
information about human diseases, by
allowing a potential linkage between
genes associated with disease and their
cellular locus of action. By combining
with genome-wide association studies
(GWAS) that identify genes causally
involved in the pathophysiology of a
disease, cell-type transcriptomics-based
data might lead to identification of
mechanistically unresolved diseases as
detected changes in expression levels of
genes from key cell types®.

5. Expression profiles allow quantita-
tive comparison of cell types across
evolutionary or developmental times,
enabling the alignment of cell types
across species (based on conserved
expression of homologous genes)' and
developmental stages (based on gradual
developmental trajectories)®* .

6. Transcriptomics also enables comparing
cell types across organs, as different or-
gans use similar genes. Thus, it could be
used to classify all the cells in the body
with a single method and framework®.

Indeed, initial transcriptomic studies
of cortical tissue are already providing
many biological insights. For example,
scRNAseq analysis of mouse and human
cortex identified a complex but finite set
of ~100 molecularly defined cell types per
cortical region that generally agree with prior
literature on cytoarchitectural organization,
developmental origins, functional properties
and long-range projections®. Moreover, the
hierarchical (agglomerative) taxonomy of
transcriptomic cell types®, based on relative
similarity between clusters, reflects these
organizational principles. Viewed as a tree
or dendrogram, the initial branches reflect
major classes (neuronal vs non-neuronal;
excitatory vs inhibitory), with finer splits
reflecting more subtle variants of each
class that reflect different developmental
programs; for example, neocortical neurons
are split into excitatory glutamatergic vs
inhibitory GABAergic classes reflecting their
different developmental origins in embryonic
pallium vs subpallial proliferative regions,
while the next splits in the GABAergic
branch contain neurons generated by
medial and caudal subdivisions of the
ganglionic eminence and the preoptic area
(Fig. 2a). These transcriptomic divisions are
consistent with a long literature on cell fate
specification of different GABAergic classes
and the transcription factors involved in that
process®=**’ (Fig. 2b). Transcriptomics also
allows quantitative analysis of developmental
trajectories involved in this specification
and maturation®** (Fig. 2¢). Genes that
differentiate neuronal classes are enriched
for those involved in neuronal connectivity
and synaptic communication, indicating they
are predictive of selective cellular and circuit
function® (Fig. 2d). Finally, the same major
transcriptomic classes of cortical GABAergic
neurons are found in mammals and reptiles®
(Fig. 2e), suggesting deep conservation
of cellular architecture and underlying
mechanisms of molecular specification.

Correspondence of cell-type
classifications across modalities
Proposing a transcriptomic-based
classification for a field traditionally
centered on cellular anatomy, physiology and

synaptic connectivity is challenging unless
such a classification correlates strongly with
those features. Recent work in the retina is
promising in this regard, where a large body
of work has established a highly diverse

set of anatomically, physiologically and
functionally discrete cell types®” and where
transcriptomic clusters strongly correlate
with this prior knowledge**”°. For example,
for mouse bipolar cells, a class comprising
15 types of excitatory interneurons, there

is essentially perfect correspondence
between types defined by scRNAseq,
high-throughput optical imaging of
electrical activity, and serial section electron
microscopy”. The spinal cord provides
another good example of correspondence
between scRNAseq and other cellular
characteristics, including developmental
origins and connectivity profiles™ "~
Similarly, scRNAseq of mammalian
hippocampus identifies neuronal cell types
that were already described by anatomy and
electrophysiology’*”.

Strong evidence for cross-modal
correspondence in neocortical cell types is
accumulating as well. An early application
of cluster analysis of mouse layer 5 neurons
showed correspondence between synaptic
connectivity, morphology and even laminar
position". Almost perfect correlations were
seen between major interneuron subclasses
for molecular markers, axonal morphology
and kinetics of synaptic inputs® (Fig. 3a).
Within somatostatin-positive interneurons,
morphological and electrophysiological
subgroups were correlated”. Other more
specific neuron types show concordance
between scRNAseq, physiology and
morphology, such as the ‘rosehip’ cell, a layer
1 inhibitory neuron type in human cortex”
(Fig. 3b). Similarly, strong correspondence
between scRNA-seq, electrophysiology
and morphology was shown for mouse
layer 1 neurogliaform and single bouquet
neurons, using the patch-seq technique,
which combines patch-clamp physiology
and scRNA-seq” (Fig. 3¢). Finally, RNA-seq
analysis of retrogradely labeled neurons
in mouse primary visual cortex shows
distinctive projections of transcriptionally
defined excitatory subclasses*’ (Fig. 3d).

Y

Fig. 2 | Transcriptomics classifications of cortical cell types. a, Single-cell transcriptome analysis reveals a molecular diversity of mouse cell types, with
relatively invariant interneuron and non-neuronal types across cortical areas but significant variation in excitatory neurons. b, Major interneuron classes are
specified by distinct transcription factor codes. ¢, Single-cell transcriptomics of mouse GABAergic interneuron development demonstrates gradual changes

in gene expression underlying developmental maturation and fate bifurcations as cells become postmitotic. d, Gene families shaping cardinal GABAergic
neuron type include neuronal connectivity, ligand receptors, electrical signaling, intracellular signal transduction, synaptic transmission and gene transcription.
These gene families assemble membrane-proximal molecular machines that customize input-output connectivity and properties in different GABAergic
types. e, Single-cell transcriptomics allows cross-species comparisons and shows conservation of major cell classes from reptiles to mammals, with conserved
transcription factors but some species-specific effectors (turtle data). TF, transcription factor. Images in a and ¢ adapted with permission from refs. 4¢3,
respectively, Springer Nature; in b, adapted with permission from ref. %/, Elsevier; in d, adapted with permission from ref. %/, Cell Press; in e, adapted with
permission from refs, 298, Elsevier and AAAS, respectively.
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Experimental tools are increasingly available
to aid in phenotypic characterization of
transcriptionally defined cell types in model
animals and even human, such as specific
Cre lines and viruses, as well as novel

Transcriptomic cell type classification
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spatial transcriptomics methods**””. While
major consortium efforts will generate the
transcriptomic framework, linking different
types of data to it will likely be most effective
as a distributed community effort.
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Fig. 3 | Correspondence across phenotypes of cortical neuron types. a, Quantitative morphological clustering and electrophysiological feature variation between
major inhibitory neuron classes using transgenic mouse lines (modified from Figs. 1and 2 from ref. *'). b, Convergent physiological, anatomical and transcriptomic
evidence for a distinctive rosehip layer 1inhibitory neuron type in human cortex that differs from neighboring neurogliaform cells. ¢, Morphological and physiological
differences between layer 1 neurogliaform and single bouguet neurons shown by patch-seq analysis. Scale bars as in b. d, RNA-seq analysis of retrogradely labeled
neurons in mouse primary visual cortex show distinctive projections of excitatory subclasses, but overlapping projections for finer transcriptomic cell types. Images
in a adapted with permission from ref. *!, Oxford Univ. Press; in b-d, adapted with permission from refs. 7>76a440 respectively, Springer Nature.

at the more refined branches of the mentioned RNA-seq study of retrogradely at the major branches of the transcriptomic
transcriptomic classification remains largely ~ labeled neurons in mouse primary visual taxonomy, there were overlapping
to be validated. One example is the already cortex™. Despite distinct projection targets projections for finer transcriptomic cell
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types (Fig. 3d). One possible explanation

is that long-range connectivity patterns are
set up early in development and may not be
strongly reflected in adult gene expression.
However, such mismatches do not negate the
value of a core transcriptomic classification
as described above. Rather, this information
about developmental trajectories needs to

be incorporated into the transcriptomic cell
type classification®.

Another challenge to transcriptomic
classifications (and, in fact, to any
classification of cell types) is the presence
of phenotypic variation within a given cell
type. One facet of this is the possibility of
variation in gene expression due to cell
state, differentiation and other dynamic
processes within a single cell type. Some
studies have suggested that cell types are
possibly not defined, discrete entities and
may be better described as components of
a complex landscape of possible states’s,
and, indeed, some of that heterogeneity
can be mapped with omics data®. Some
continuous variation could be functionally
relevant. For example, basal dendritic
lengths and morphological complexity of
layer 2/3 pyramidal cells appears to vary
smoothly across a rostrocaudal axis in
mouse cortex® (Fig. 4a). Further evidence
for spatial gradients can be found in the
graded transcriptomic variation across
the human cortex®, perhaps reflecting the
expression of transcription factor gradients
in the ventricular zone during development
(Fig. 4b). These phenotypic or spatial
gradients create challenges for thresholding
in clustering, and they fuel debates between
lumpers and splitters in determining the
right level of granularity in defining
cell types.

A particular advantage of a
transcriptomic classification is that it
provides a direct avenue for quantitative
comparative analysis by aligning cell
types across species based on shared gene
covariation, enabling an ‘Ur-classification’
as a common denominator of basic cell
types. For example, a recent study of human
cortex® demonstrated that the overall
cellular organization of the human cortex
is highly conserved with that of the mouse,
allowing identification of homologous cell
types (Fig. 4c). However, this study also
revealed a challenge for the future, in that,
in many cases, it was not possible to align
cell types across species at the finest levels
of granularity but rather at a higher level in
the hierarchical taxonomy. Furthermore,
many differences were seen in homologous
types, including their proportions,
laminar distributions, gene expression and
morphology. Finally, prominent differences
were found in non-neuronal cells as well,

including astrocyte diversity and divergent
molecular phenotypes between mouse

and human that correlate with known
morphological specializations in primate
astrocytes™®’*. Such similarities and
differences between cell types across species,
as well as challenges created by graded or
developmental variations in features, could
also be better captured by a probabilistically
defined and hierarchically organized
cell-type taxonomy.

A probabilistic and hierarchical defini-
tion of cortical cell types

Examining the current transcriptomic
evidence, in some cases we find highly
distinct cell types based on robust
similarities of the transcriptome and other
measurable cell attributes, as exemplified
by the phenotypic homogeneity of
neocortical chandelier cells**-* or the
above-mentioned rosehip cells. On the other
hand, the existence of cell states, spatial
gradients of phenotypes and mixtures of
differences and similarities in cross-species
comparisons present challenges to a
discrete and categorical perspective on
defining cell types. Prematurely adopting
an inflexible definition of types will obscure
the significance of observed phenotypic
variability and its biological interpretation.
Rather, a plausible way forward is to employ
a practical or operational quantitative
definition of a cell type.

Cluster analysis has been used to
classify cortical neurons according to their
structural or physiological phenotypes or
expression of molecular markers'®!*?%31887-%
and, more recently, transcriptomics®>*%2,
Many unsupervised and supervised
methods can be used, including multilayer
perceptrons'®, logistic regression'®, k-nearest
neighbors'®, affinity propagation®,

Bayesian classifiers™, naive Bayes'®, topic
modelling™, t-distributed stochastic
neighbor embedding (t-SNE)*>*, graph
theory” and autoencoders™. These methods,
building on the existence of statistically
defined groups or clusters over a set of
measurable attributes, naturally lead to an
evidence-based probabilistic definition of
cell types.

A probabilistic definition of cell types is
particularly applicable to transcriptomics,
where the dimension of the underlying
space is large, the variance comparatively
high and competing approaches give similar
results. However, one requires community
consensus on a rigorous statistical definition
of transcriptomic types and the description
of intra- and inter-type variability. Ideally,
this quantitative definition of a cell type
would be independent of the statistical
method used (i.e., robust to different
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methods) and would include a description
of quantitative metrics such as resolution,
complexity, variability, uniqueness and
association of variables with other attributes.
There are two approaches to find and test
cluster validity. One is ‘hard’ clustering, with
clearly defined borders between clusters and
with each cell strictly assigned to a particular
type. Alternatively, in ‘soft’ (or ‘fuzzy’)
clustering, any given cell has a particular
probability of belonging to a particular
cluster. Despite the probabilistic nature,
inter- and intra-cluster distance may still be
defined for outcome validation. Ultimately,
the consensus description of cell types may
form a continuum, beginning with hard and
ending with soft distinctions among cell
types, with an ambiguous transition between
these extremes.

One natural approach to represent a
transcriptomic taxonomy is to adopt a
hierarchical framework. Cluster analysis is
well suited to this, as its connectivity-based
methods generate a tree-like representation
of clusters”. This approach follows the
historical tradition of using cladistics to
classify organisms, assuming common
ancestors in their evolution and
synapomorphies (shared derived traits)
among related clades. While statistical
clusters do not presume any hierarchy in the
structure of the data, biological systems have
a temporal evolution as one of their essential
features and makes temporally based
hierarchies natural'®. The evolutionary or
developmental history of a neural circuit
implies earlier stages, which are often less
specialized and represent common ancestors
of later states'”’. Indeed, a hierarchical
organization of existing transcriptomic cell
types data appears to mirror developmental
principles and spatiotemporal organization
in the neocortex (see above). Another
advantage of casting the cell type
classification as a cladistic one is that the
lumping-splitting tension maps itself
naturally as a distinction between different
levels of the hierarchical tree, since one can
split a group into subgroups at a lower level
of the hierarchy to reflect data obtained in
different physiological or developmental
conditions. This provides an effective and
objective framework to quantitatively
evaluate lumper-vs-splitter discussions.

But hierarchical transcriptomic
relationships may not be easily represented
as a simple tree-like structure. Rather, they
may have complex inclusion-exclusion
and class relationships and may be
more amenable to graph-based or other
set-theoretic constructions. Indeed, the
space of the transcriptomes for cortical
cell types could be visualized as a complex,
high-dimensional landscape with isolated
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Challenges for transcriptomic classification. a, Gradients in morphological size and complexity across the rostrocaudal extent of the cortex. b, Graded
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peaks of expression for a given cell type but
also valleys and gradients between more
weakly defined classes, which could be
described alternatively as types or states.
Such complexity can be described using, for

example, the concept of cell-type attractors®,

or using the distinction between core and
intermediate cells* or the description of

a cell type as a continuous trajectory in

transcriptomic space'®. A robust statistical

framework that enables a quantitative

definition of cell type (or tendency to be a

type) is clearly needed.
A final, and key, question is how to
ensure that any given classification or

taxonomy is valid. The goal is not defining

a classification system per se, but to create
a comprehensive description of cellular
diversity in the neocortex. One needs to
ensure that the experimental method will
indeed capture all of the cell types present,
that the classification is complete and that
the types are defined correctly. For any
classification to be valid, it is critical to
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ensure accuracy and correctness. First, it
is imperative to seek internal statistical
robustness for identified clusters, using
different statistical methods*>!'*®. Second,
external validation with orthogonal
datasets is critical. Multimodal datasets
are particularly important in this regard,
as they enable cross-comparisons between
classifications based on different types of
data, for example, molecular, physiological
or anatomical®>’, patch-seq’, or spatial
transcriptomics methods* (Fig. 3a—c) can
enable this, defining functionally relevant
levels of granularity. Finally, a probabilistic
definition, particularly with a Bayesian
framework, can be tested by generatively
building computational models of each cell
type and comparting them with the real
data, thus providing some performance
metrics on the algorithms. Using these
criteria, robustness, reproducibility and
predictive power can be measured and
different approaches compared, as is
normally done in machine learning'.

A unified ontology and nomenclature
of cortical cell types
To truly gain community adoption, the
data-driven transcriptomic classification of
cortical cell types requires a formal unified
cell type classification, a taxonomy and a
nomenclature system'”**** whose principles
are generalizable to other systems. Names
are important: as an old Basque proverb
states, ‘izena duen guzia omen da’ or ‘that
which has a name exists, and a similar
Chinese one says ‘the beginning of wisdom
is to call things by their right names’ This
classification should aim to be a consensus
one that incorporates the richness of data
accumulated by different groups and be
presented in a curated output that is public,
easily accessible and has revisions managed
by a curation committee of experts. Creation
of such an ontology is a serious project in
data organization that can build on prior
efforts in cell ontologies'**"'%, as well as
best practices established by the ontology
development community'”’ (see Open
Biomedical Ontology Foundry, http://www.
obofoundry.org).

A true, data-driven transcriptomic
taxonomy poses a series of challenges
that have not yet been taken on by the
cell ontology community, but that are
surmountable. One challenge is that
transcriptomically similar cell types can
exist in multiple anatomical locations. Thus,
transcriptomic types need to be related to
proper levels of the anatomical structure.
Prominent gradients across cortical areas
pose another challenge to define in a
taxonomy. While any given cortical region
contains some number of transcriptomic

types, it seems likely that many of these
types will vary in a somewhat continuous
fashion across cortical areas and possibly
also across species (Fig. 4a,b). Likewise,

the classification system should also have

a temporal component to capture the
developmental trajectory from progenitor
cell division to a terminally differentiated
state. Cells can be quantitatively defined

by their position on that developmental

or spatial gradient. Finally, aligning across
species is quantitatively possible now, but
this alignment may only be possible at
different levels of granularity with increasing
evolutionary distance. The benefits of
creating a unified reference ontology across
these biological axes will be large, but it will
be a serious community effort to design a
system that can accommodate them.

Following the genetic classification
paradigm proposed here, there are many
lessons to learn from genomics. For
example, the reference classification could
be iteratively updated and refined with
subsequent accumulation of data'* like
genome builds, which changed in the early
years but have become increasingly stable.
As in current gene nomenclature, an official
symbol with multiple aliases can link cell
types to commonly used terminology
relating to cellular anatomy or other
phenotypes. This nomenclature should be
portable across species, with orthologous
cell types having common names, much as
current gene symbols refer to orthologous
genes. For the cell type classification
to be useful like the genome has been,
computational tools conceptually similar
to BLAST alignment tools'” for mapping
sequence data, need to be developed to
allow researchers to quantitatively map their
data to this reference classification. Finally,
continuing the analogy with genomics, just
as there are different versions of genome
builds for different purposes (for example,
with more or less manual curation), one
could consider different versions of cortical
cell type taxonomies, with varying levels of
splitting or lumping; spatial, temporal or
evolutionary criteria; or even some manually
curated by experts, but under a unified
framework of probabilistic definition of
cell types.

Nomenclature also poses a challenge.
Currently, the lack of standardized
nomenclature makes it difficult to track
and relate cell types across different studies.
One natural idea with a genetically based
paradigm is to name cell types on the basis
of the best defining genes for each cell
type, as is currently commonly done**-'°.
However, the most specific genes are not
always detected in every cell of a cluster, and
often the genes that best define a cell type
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in one species are not conserved in other
species. The traditional way of naming cell
types is by their anatomical features (such
as chandelier, double-bouquet, basket,
Martinotti, pyramidal cells), and it would
be desirable to incorporate these short and
widely-used names into a nomenclature
when possible, to seek consistency with
the vast literature on neocortical cell
types. However, anatomical features, such
as horsetail axons, may also vary across
species'’. Also, for newly identified cell
types, anatomical information is often not
available and naming them by marker genes
will be more practical.

Adopting a more abstract nomenclature
not based on anatomical features or
individual marker genes could make it
more flexible, more easily applicable across
species and more compatible with other
tissues outside the cortex or the brain. One
idea for a cell-type nomenclature system
is to build on gene nomenclature, treating
transcriptomic cell clusters as sequence
data (partially implemented for Allen
Institute datasets; https://portal.brain-map.
org/explore/classes/nomenclature). Every
cell cluster from a dataset or analysis
would get a unique accession ID. Robust
and reproducible clusters would have
official cell type names or symbols, as
well as any number of aliases that could
represent different existing nomenclatures
or historical names. In addition to cell
types, higher-order classes (for example,
caudal ganglionic eminence (CGE)-derived
GABAergic interneurons, GABAergic
interneurons, neurons) could be named as
well, and both types and classes would be
matched across species at the level (type,
class) at which they can be aligned.

A cell-type knowledge graph for com-
munity data aggregation

Defining the cell types of the cortex

(or other brain structures) serves as a
foundation for aggregating information
about their function. By analogy to the
genome, the definition of genes has allowed
a massive integration of information about
their usage, function and disease relevance
with a wide range of databases. On the other
hand, probabilistically defined cell types are
not the same as deterministically defined
protein-coding regions of the genome, and
we can expect that our understanding of
cell types and their functional relevance
will change as more information becomes
available. A more flexible way to organize
our knowledge and understanding of

cell types would be as a living, updatable
framework, one allowing reference,

query and inference. An online-based

data aggregation platform could also
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have a significant sociological impact in
neuroscience by encouraging collaborative
participation.

One example of an appropriate data
structure for such a community platform is
a ‘knowledge graph’, a widely used tool in
the tech industry and computer science as a
platform for data aggregation (Fig. 5).

A knowledge graph is a relational data
structure in which nodes represent entities
(such as cell types and their attributes) and
the links, or edges, between them represent
their relational and statistical associations.
There is a measurable graph-theoretic
distance between nodes based on probable
associations and known relationships. The
cortical cell knowledge graph could be
initialized with standardized transcriptomics
data, after which other data modalities and
related taxonomies could be readily mapped
onto the graph to capture anatomical,
electrophysiological, developmental and
other cell properties. For example, important
contributors to cell identity, determined

by cellular interactions, splicing, local
translation, protein phosphorylation, etc.,
may not be readily captured by scRNA-seq

at present, but could be measured in

future CAP datasets, which could then be
added to the knowledge graph. In such

a knowledge graph, there are two basic
use-cases as new data becomes available.
First, one can use it to identify known cell
types and their properties in new datasets.
With a probabilistic or Bayesian definition,
each new cell will be assigned a probability
of belonging to a particular type in the
graph. Second, the graph can be manually
or automatically updated, following
conventional optimization algorithms, as
new data can change node identities and
distances with respect to one another.

The proposed cell-type knowledge
framework would represent a living and
updatable resource that maintains an
actively derived and flexible ontology of
cortical cell types, benefitting from present
active ontology efforts. This standardized
database could be powered by open-source
algorithms and managed and curated by
database administrators. It would be a
dynamic database with query capability,
but would only accept peer-reviewed
published data in a standardized fashion

and nomenclature, providing a common
denominator for the research in the field,
integrating quantitative and qualitative
cell-type classification, and allowing for
updates, subject to review and validation.
Computational engines would allow new
data to be compared and allow users

to query the current state of cell-type
understanding from the perspective of
their new data, assigning the most likely
type to multi- or unimodal datasets based
on similarities to the current framework’s
knowledge. In addition to supporting
literature reference, the dynamic framework
might include online forums for scientific
discussion and education. Ultimately, a
cell-type community knowledge framework
would be a dynamic and living resource that
researchers, clinicians and educators could
refer to as the benchmark resource for cell
types in the cortex, promoting collaborative
participation in the field.

Maintaining and updating the
classification

The classification, nomenclature and
associated knowledge graph could be
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managed by a committee of experts
representing the breadth of approaches and
disciplines in the field. Such a committee
would be charged with designing the
statistical classification model to sustain

a basic taxonomy; the type of open

platform to use for the knowledge graph;
the rules by which this taxonomy can be
updated and revised; the quality control or
peer-reviewed criteria; and the metadata

to be added. While the knowledge graph
could continually update itself automatically,
as new data is imported, different curated
versions of the graph might be released in
regular updates. This committee, arising
from expert volunteers, could also help with
vetting of a unified nomenclature of cortical
cells that is succinct, useful and informative,
as well as methods by which community
input would be incorporated in a fair and
efficient fashion.

Potentially, such a committee might
be established and supported through
existing organizations or consortia
with interest in cell type classification,
such as the NIH BRAIN Initiative Cell
Census Network (BICCN; https://www.
biccn.org), the NeuroLex-International
Neuroinformatics Coordinating Facility
(INCEF; http://130.229.26.15/news/activities/
our-programs/pons/neurolex-wiki.
html), the Neuroscience Information
Framework (NIF; https://neuinfo.org),
the Human Brain Project (HBP; https://
www.humanbrainproject.eu/), the Human
BioMolecular Atlas Program (HuBMAP;
https://commonfund.nih.gov/hubmap) or
the Human Cell Atlas (HCA; https://www.
humancellatlas.org/). Some of these groups
are already chartered with mapping the cell
types of the nervous system or other organs
in the body and may have resources to build
the backend technological infrastructure
needed for the knowledge graph.

Regardless of who supports and
maintains this key infrastructure, it is
critical that the efforts be managed through
open communication with the community.
A public consortium will be a logical
organizational structure for channeling
diverse inputs and will also adequately
represent the wider community, reflecting
cultural, geographic, ethnic and gender
diversity. Strong community engagement
will ensure wide acceptance and ensure
that these standards are adopted widely,
within and outside of the neocortex
specialist field.

A community-based taxonomy and
nomenclature of cortical cell types

To conclude, we think that the field of
neocortical studies is ready for a synthetic,
principled classification of cortical cell types,

based on single-cell transcriptomic data
and anchored on quantitative criteria that
operationally define cell clusters based on
their statistical and probabilistic grouping.
Although molecularly driven initially, this
taxonomy should be revised and modified as
additional CAP datasets become available,
becoming a true multimodal classification
of cortical cell types. We view this core
classification as potentially valid for all
mammalian species and also as likely
applicable to homologous structures in
other vertebrates, as a broad framework to
encapsulate evolutionary conservation with
species specialization. Indeed, only with
such a systematic approach to comparing
cell types across species will it be possible to
understand how cell type diversity evolved
in the cerebral cortex.

This taxonomy will only be useful and
successful if adopted by the community. So,
in addition to the nomenclature, a series of
research tools should be developed, ideally
by a community consortium, to facilitate
similar experimental access to these cell
types by the broader range of investigators.
We envision molecular and genetic tools,
such as standard sets of antibodies and RNA
probes to identify key molecular markers
for each cell type, as well as cell or mouse
lines that are used as resources for the entire
community. Statistical tools to enable direct
comparisons among datasets, and to enable
mapping new datasets to reference datasets,
are essential. An open informatics backbone
needs to be developed as an essential part of
the taxonomy, as well as visualization and
analysis tools that take advantage of this
taxonomy and allow scientists to explore the
data, add to the knowledge base and achieve
new knowledge.

In addition, we propose that the
community input to support this taxonomy
and enable its future revisions be channeled
into an open platform, a knowledge graph,
as is becoming increasingly common in
community-led data science. Aggregation
of knowledge through data graphs, now
a common practice in the tech industry,
will accelerate the dissemination of
knowledge and could avoid the ‘publication
graveyard, where data are stored away
in siloed journal articles disconnected
from the rest of the field. Anchoring this
taxonomy and knowledge graph, a unified
new nomenclature of cortical cell types
valid across species is needed to centralize
efforts in the field, with a generalizable
framework to integrate with other cell-type
classifications. We view the establishment
of a common nomenclature as an essential
step to provide a standardized language that
enables the meaningful aggregation and
sharing of data.
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If successful, this community-based
classification effort, joined by a common
nomenclature and nourished by the
knowledge graph, could be extended and
generalized to other parts of the brain or
of the body. In this sense, the classification
of neocortical cell types, a field with a long
tradition and multidimensional approach
to a central problem in neuroscience, could
be an ideal test case to explore this novel
organization of knowledge in neuroscience
and, more generally, in biology. a
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