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A community-based transcriptomics 
classification and nomenclature of neocortical 
cell types
To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do 
so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy 
of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, 
systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of 
being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond 
to cell types previously defined by morphological or physiological criteria and that appear conserved across 
cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based 
taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized 
nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different 
approaches, developmental stages and species. A community-based classification and data aggregation 
model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This 
community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases 
in other parts of the body.
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Classifications of cortical cell types: 
from Cajal to the Petilla Convention
The conceptual foundation of modern 
biology is the cell theory of Virchow, 
which described the cell as the basic unit 
of structure, reproduction and pathology 
of biological organisms1. This idea, which 
arose from the use of microscopes by 
Leeuwenhoek, Hooke, Schleiden and 
Schwann, among others, generated the need 
to build catalogs of the cellular components 
of tissues as the first step toward studying 
their structure and function. As with 
species, these cell catalogs, or atlases, can be 

ideally systematized into ‘cell taxonomies’, 
classifying groups of cells based on shared 
characteristics and grouping them into taxa 
with ranks and a hierarchy. Taxonomies 
are important: they provide a conceptual 
foundation for a field and also enable the 
systematic accumulation of knowledge. 
Essential to this effort is the clear definition 
of cell type, normally understood as cells 
with shared phenotypic characteristics.

Virchow’s cell theory was introduced 
to neuroscience by Cajal, whose ‘neuron 
doctrine’ postulated that the structural unit 
of the nervous system was the individual 

neuron2. Since then, generations of 
investigators have described hundreds of cell 
types in nervous systems of different species. 
This effort has been particularly arduous 
in the cerebral cortex (or neocortex), the 
largest part of the brain in mammals and the 
primary site of higher cognitive functions. 
The mammalian neocortex has a thin 
layered structure, composed of mixtures of 
excitatory and inhibitory neurons arranged 
in circuits of a forbidding complexity, called 
“impenetrable jungles” by Cajal3. This basic 
structure is very similar in different cortical 
areas and in different species, which has 
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given rise to the possibility that there is a 
‘canonical’ cortical microcircuit4–7, replicated 
during evolution, which underlies all 
cortical function.

After more than a hundred years of 
sustained progress, it is clear that neocortical 
neurons and glial cells, like cells in any 
tissue, belong to many distinct types. 
Different cell types likely play discrete 
roles in cortical function and computation, 
making it important to characterize and 
describe them accurately and in their 
absolute and relative numbers. Towering 
historical figures like Cajal, Lorente de Nó 
and Szentágothai, among others, proposed 
classifications of cortical cells based on their 
morphologies as visualized with histological 
stains4,8,9 (Fig. 1a–c). These anatomical 
classifications described several dozen types 
of pyramidal neurons, short-axon cells 
and glial cells, and they were subsequently 
complemented by morphological accounts 
of additional cortical cell types by many 
researchers10–12, but without arriving at a 
clear consensus as to the number or even the 
definition of a cortical cell type.

Over the last few decades, the 
introduction of new morphological, 
ultrastructural, immunohistochemical and 
electrophysiological methods, new molecular 
markers, and a growing appreciation of the 
developmental origins of distinct neuronal 
subtypes (Fig. 1d–h), have provided 
increasingly finer phenotypic measurements 
of cortical cells and enabled new efforts to 
classify them more quantitatively, using 
supervised or unsupervised methods such 
as cluster analysis13–16. A community effort 
to classify neocortical inhibitory cells was 
attempted at the 2005 Petilla Convention, 
held in Cajal’s hometown in Spain, and led 
to a common standardized terminology 
describing the anatomical, physiological 
and molecular features of neocortical 
interneurons17. While useful, this fell 
short of providing a classification and 
working framework that investigators could 
incorporate into their research. One reason 
why this early effort failed was because the 
datasets for phenotypically characterizing 
cortical neurons were small. Indeed, many of 
the early studies are based on characterizing 
dozens or at most hundreds of neurons, 
small samples from the nearly 20 billion in 
human neocortex18.

An outcome of the Petilla Convention 
was the realization that there was not yet a 
single method that captured the inherently 
multimodal nature of cell phenotypes and 
could serve as a standard for classification. 
While most researchers accepted the 
existence of cell types that could be 
measured and defined independently 
by different methods, there was no 

agreement as to which would form an 
optimal basis for classification. In principle, 
many criteria can be used, including 
(i) anatomical or connectivity-based 
features19,20, (ii) parametrization of intrinsic 
electrophysiological properties21, (iii) 
combination of structural and physiological 
criteria22,23, (iv) molecular markers14,24,25, (v) 
developmental origins26,27, (vi) epigenetic 
attractor states28 or (vii) evolutionary 
approaches identifying homology across 
species29,30. Ideally, these classifications 
should converge and agree, or at least 
substantially overlap. Indeed, there is 
substantial concordance among categories 
based on anatomical, molecular and 
physiological criteria13,22,31–34, but it has not 
been easy to combine these approaches 
into a unified taxonomy. There are 
substantial differences between researchers 
in assigning neurons to particular types 
in the literature19, and even experts often 
disagree on what constitutes ground truth. 
For example, while most publications agree 
on what a chandelier cell is, the concept of 
basket cells, a major subtype of inhibitory 
neuron, is much less clear19.

This uncertainty is explained and 
exacerbated by technical challenges: 
conventional approaches have been 
laborious, low-throughput, frequently 
non-quantitative and generally plagued by 
an inability to sample cells in standardized 
and systematic ways. Thus, setting aside 
debates about the importance of various 
criteria and the nature or even existence 
of discrete cell types, it is not surprising 
that the cell-type problem has remained 
challenging.

Transcriptomics: a new framework for 
classifying cortical cell types
Recent advances in high-throughput 
single-cell transcriptomics (scRNAseq) 
have changed the paradigm of cellular 
classification, offering a new quantitative 
genetic framework35–40. These approaches 
measure the expression profiles of thousands 
of genes from individual cells in large 
numbers, at relatively high speed and low 
cost. Related methods in epigenomics can 
identify sites of methylation and putative 
gene transcriptional regulation, essential to 
cell function and state. These new methods 
are an outcome from the methodological, 
conceptual and economic revolution 
created by the Human Genome Project41 
and have flourished with support from 
the BRAIN Initiative42,43. With genomes in 
hand, it is now feasible to generate entire 
transcriptomes (which include the sequence 
and structure of transcripts) from tissues 
and to scale these methods for amplifying 
RNA in single cells. Initially limited to only 

a few hundred cells per experiment, effective 
new methods have emerged for profiling 
thousands of cells or nuclei at a time44–48. 
With simultaneous computational advances 
for analyzing large sequence-based data49,50, 
it is now possible to systematically  
classify and characterize the diversity of 
neural cells in any tissue, including the 
neocortex (Fig. 2).

Conceptually, as much as the genome 
is the internal genetic description for each 
species, the transcriptome, as the complete 
set of genes being expressed, provides an 
internal code that can describe each cell 
within an organism in a spatiotemporal 
context. Practically, the scale of scRNAseq 
promises near-saturating analysis of 
complex cellular brain regions like the 
neocortex, providing, for the first time, a 
comprehensive and quantitative description 
of cellular diversity and the prospect of 
simplifying tissue cell composition to a finite 
number of cell types and states defined by 
statistical clustering. Importantly, however, 
these transcriptionally defined clusters 
represent a probabilistic description of cell 
types in a high-dimensional landscape of 
gene expression across all cells in a tissue, 
rather than a definition based on a small set 
of necessary and sufficient cellular markers 
or other features (see below).

The scale, precision and information 
content of these current methods now far 
outpace other classical methods of cellular 
phenotyping in neuroscience and have the 
potential to approach the complete, accurate 
and permanent (CAP) criteria cited by 
Brenner as the gold standard in biological 
science51. Indeed, major efforts now aim 
to generate a complete description of cell 
types based on molecular criteria across 
the neocortex (Allen Institute for Brain 
Science36,40), the whole brain (the National 
Institutes of Health (NIH) BRAIN Initiative 
Cell Census Network52) and even the whole 
body (the Human Cell Atlas53). Also, as the 
Human Genome Project offered a means for 
comparative analysis of orthologous genes 
across species, these efforts could define 
all or most cell types and states in humans 
and model organisms, with the possibility 
of extending them to a variety of species 
to understand the evolution of cell-type 
diversity. These large investments have 
the potential for a transformative effect on 
neuroscience, which will be accelerated by 
a formalization of a molecular classification 
and its adoption by the community. They 
also hold promise for the development 
of methods for querying circuit function 
by providing tools for the targeting and 
manipulation of particular subtypes.

Transcriptomic classification offers 
the following advantages as a framework 
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Fig. 1 | Non-transcriptomics cortical cell-type classifications. a,b, Morphological characterization and classification of neurons (a) and glial cells (b) by 
Ramón y Cajal (1904)4. c, Diagram showing the connections of different types of interneurons with pyramidal cells. Adapted from Szentágothai (1975)9. d, 
Definition of GABAergic interneuron classes based on non-overlapping and combinatorial marker gene expression. e, Correlation of firing properties with 
class markers. f, Cortical cell type classification based on intrinsic firing properties (Petilla convention). g, Complex relationships between cellular morphology, 
marker-gene expression and intrinsic firing properties based on multimodal analysis. h, Comprehensive morphological and physiological classifications of 
cortical cell types. Images in a,b reprinted with permission from ref. 4, Cajal Institute; in c, adapted with permission from ref. 9, Elsevier; in d, adapted with 
permission from ref. 25, Oxford Univ. Press; in e, adapted with permission from ref. 14, Society for Neuroscience; in f and g, adapted with permission from  
refs. 17,21, respectively, Springer Nature; in h, adapted with permission from ref. 23, Cell Press.
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for bounding the problem of cellular 
diversity53–56:
	1.	 High-throughput transcriptomics is 

very effective at allowing a systematic, 
comprehensive analysis of cellular di-
versity in complex tissues. Its quantita-
tive and high-throughput nature enables 
the adoption of rigorous definitions 
and criteria using datasets from tens of 
thousands to millions of cells.

	2.	 The genes expressed by a cell during its 
development and maturity ultimately 
underlie its structure and function, and 
so the transcriptome offers predictive 
power based on interpreting gene func-
tion. Other cellular phenotypes, includ-
ing morphology, are in part encoded by 
genes, rather than completely independ-
ent defining criteria57.

	3.	 A molecular definition of cell types 
allows the identification of cell-type 
markers and the creation of genetic 
tools to target, label and manipulate 
specific cell types58,59, thereby provid-
ing the means to standardize datasets 
obtained by different researchers.

	4.	 Transcriptomic data can also provide 
information about human diseases, by 
allowing a potential linkage between 
genes associated with disease and their 
cellular locus of action. By combining 
with genome-wide association studies 
(GWAS) that identify genes causally 
involved in the pathophysiology of a 
disease, cell-type transcriptomics-based 
data might lead to identification of 
mechanistically unresolved diseases as 
detected changes in expression levels of 
genes from key cell types60.

	5.	 Expression profiles allow quantita-
tive comparison of cell types across 
evolutionary or developmental times, 
enabling the alignment of cell types 
across species (based on conserved 
expression of homologous genes)61 and 
developmental stages (based on gradual 
developmental trajectories)62–64.

	6.	 Transcriptomics also enables comparing 
cell types across organs, as different or-
gans use similar genes. Thus, it could be 
used to classify all the cells in the body 
with a single method and framework53.

Indeed, initial transcriptomic studies 
of cortical tissue are already providing 
many biological insights. For example, 
scRNAseq analysis of mouse and human 
cortex identified a complex but finite set 
of ~100 molecularly defined cell types per 
cortical region that generally agree with prior 
literature on cytoarchitectural organization, 
developmental origins, functional properties 
and long-range projections65. Moreover, the 
hierarchical (agglomerative) taxonomy of 
transcriptomic cell types66, based on relative 
similarity between clusters, reflects these 
organizational principles. Viewed as a tree 
or dendrogram, the initial branches reflect 
major classes (neuronal vs non-neuronal; 
excitatory vs inhibitory), with finer splits 
reflecting more subtle variants of each 
class that reflect different developmental 
programs; for example, neocortical neurons 
are split into excitatory glutamatergic vs 
inhibitory GABAergic classes reflecting their 
different developmental origins in embryonic 
pallium vs subpallial proliferative regions, 
while the next splits in the GABAergic 
branch contain neurons generated by 
medial and caudal subdivisions of the 
ganglionic eminence and the preoptic area 
(Fig. 2a). These transcriptomic divisions are 
consistent with a long literature on cell fate 
specification of different GABAergic classes 
and the transcription factors involved in that 
process62–64,67 (Fig. 2b). Transcriptomics also 
allows quantitative analysis of developmental 
trajectories involved in this specification 
and maturation62–64 (Fig. 2c). Genes that 
differentiate neuronal classes are enriched 
for those involved in neuronal connectivity 
and synaptic communication, indicating they 
are predictive of selective cellular and circuit 
function37 (Fig. 2d). Finally, the same major 
transcriptomic classes of cortical GABAergic 
neurons are found in mammals and reptiles68 
(Fig. 2e), suggesting deep conservation 
of cellular architecture and underlying 
mechanisms of molecular specification.

Correspondence of cell-type  
classifications across modalities
Proposing a transcriptomic-based 
classification for a field traditionally 
centered on cellular anatomy, physiology and 

synaptic connectivity is challenging unless 
such a classification correlates strongly with 
those features. Recent work in the retina is 
promising in this regard, where a large body 
of work has established a highly diverse 
set of anatomically, physiologically and 
functionally discrete cell types69 and where 
transcriptomic clusters strongly correlate 
with this prior knowledge35,69,70. For example, 
for mouse bipolar cells, a class comprising 
15 types of excitatory interneurons, there 
is essentially perfect correspondence 
between types defined by scRNAseq, 
high-throughput optical imaging of 
electrical activity, and serial section electron 
microscopy35. The spinal cord provides 
another good example of correspondence 
between scRNAseq and other cellular 
characteristics, including developmental 
origins and connectivity profiles71,72. 
Similarly, scRNAseq of mammalian 
hippocampus identifies neuronal cell types 
that were already described by anatomy and 
electrophysiology73,74.

Strong evidence for cross-modal 
correspondence in neocortical cell types is 
accumulating as well. An early application 
of cluster analysis of mouse layer 5 neurons 
showed correspondence between synaptic 
connectivity, morphology and even laminar 
position13. Almost perfect correlations were 
seen between major interneuron subclasses 
for molecular markers, axonal morphology 
and kinetics of synaptic inputs31 (Fig. 3a). 
Within somatostatin-positive interneurons, 
morphological and electrophysiological 
subgroups were correlated22. Other more 
specific neuron types show concordance 
between scRNAseq, physiology and 
morphology, such as the ‘rosehip’ cell, a layer 
1 inhibitory neuron type in human cortex75 
(Fig. 3b). Similarly, strong correspondence 
between scRNA-seq, electrophysiology 
and morphology was shown for mouse 
layer 1 neurogliaform and single bouquet 
neurons, using the patch–seq technique, 
which combines patch-clamp physiology 
and scRNA-seq76 (Fig. 3c). Finally, RNA-seq 
analysis of retrogradely labeled neurons 
in mouse primary visual cortex shows 
distinctive projections of transcriptionally 
defined excitatory subclasses40 (Fig. 3d). 

Fig. 2 | Transcriptomics classifications of cortical cell types. a, Single-cell transcriptome analysis reveals a molecular diversity of mouse cell types, with 
relatively invariant interneuron and non-neuronal types across cortical areas but significant variation in excitatory neurons. b, Major interneuron classes are 
specified by distinct transcription factor codes. c, Single-cell transcriptomics of mouse GABAergic interneuron development demonstrates gradual changes 
in gene expression underlying developmental maturation and fate bifurcations as cells become postmitotic. d, Gene families shaping cardinal GABAergic 
neuron type include neuronal connectivity, ligand receptors, electrical signaling, intracellular signal transduction, synaptic transmission and gene transcription. 
These gene families assemble membrane-proximal molecular machines that customize input–output connectivity and properties in different GABAergic 
types. e, Single-cell transcriptomics allows cross-species comparisons and shows conservation of major cell classes from reptiles to mammals, with conserved 
transcription factors but some species-specific effectors (turtle data). TF, transcription factor. Images in a and c adapted with permission from refs. 40,63, 
respectively, Springer Nature; in b, adapted with permission from ref. 27, Elsevier; in d, adapted with permission from ref. 37, Cell Press; in e, adapted with 
permission from refs. 30,68, Elsevier and AAAS, respectively.
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Experimental tools are increasingly available 
to aid in phenotypic characterization of 
transcriptionally defined cell types in model 
animals and even human, such as specific 
Cre lines and viruses, as well as novel 

spatial transcriptomics methods54,77. While 
major consortium efforts will generate the 
transcriptomic framework, linking different 
types of data to it will likely be most effective 
as a distributed community effort.

Challenges for cortical cell type 
classification
Although strong cross-modal 
correspondence has been observed at the 
major subclass level, such correspondence 
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at the more refined branches of the 
transcriptomic classification remains largely 
to be validated. One example is the already 

mentioned RNA-seq study of retrogradely 
labeled neurons in mouse primary visual 
cortex40. Despite distinct projection targets 

at the major branches of the transcriptomic 
taxonomy, there were overlapping 
projections for finer transcriptomic cell 
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Fig. 3 | Correspondence across phenotypes of cortical neuron types. a, Quantitative morphological clustering and electrophysiological feature variation between 
major inhibitory neuron classes using transgenic mouse lines (modified from Figs. 1 and 2 from ref. 31). b, Convergent physiological, anatomical and transcriptomic 
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types (Fig. 3d). One possible explanation 
is that long-range connectivity patterns are 
set up early in development and may not be 
strongly reflected in adult gene expression. 
However, such mismatches do not negate the 
value of a core transcriptomic classification 
as described above. Rather, this information 
about developmental trajectories needs to 
be incorporated into the transcriptomic cell 
type classification28.

Another challenge to transcriptomic 
classifications (and, in fact, to any 
classification of cell types) is the presence 
of phenotypic variation within a given cell 
type. One facet of this is the possibility of 
variation in gene expression due to cell 
state, differentiation and other dynamic 
processes within a single cell type. Some 
studies have suggested that cell types are 
possibly not defined, discrete entities and 
may be better described as components of 
a complex landscape of possible states78–80, 
and, indeed, some of that heterogeneity 
can be mapped with omics data81. Some 
continuous variation could be functionally 
relevant. For example, basal dendritic 
lengths and morphological complexity of 
layer 2/3 pyramidal cells appears to vary 
smoothly across a rostrocaudal axis in 
mouse cortex82 (Fig. 4a). Further evidence 
for spatial gradients can be found in the 
graded transcriptomic variation across 
the human cortex83, perhaps reflecting the 
expression of transcription factor gradients 
in the ventricular zone during development 
(Fig. 4b). These phenotypic or spatial 
gradients create challenges for thresholding 
in clustering, and they fuel debates between 
lumpers and splitters in determining the 
right level of granularity in defining  
cell types.

A particular advantage of a 
transcriptomic classification is that it 
provides a direct avenue for quantitative 
comparative analysis by aligning cell 
types across species based on shared gene 
covariation, enabling an ‘Ur-classification’ 
as a common denominator of basic cell 
types. For example, a recent study of human 
cortex61 demonstrated that the overall 
cellular organization of the human cortex 
is highly conserved with that of the mouse, 
allowing identification of homologous cell 
types (Fig. 4c). However, this study also 
revealed a challenge for the future, in that, 
in many cases, it was not possible to align 
cell types across species at the finest levels 
of granularity but rather at a higher level in 
the hierarchical taxonomy. Furthermore, 
many differences were seen in homologous 
types, including their proportions, 
laminar distributions, gene expression and 
morphology. Finally, prominent differences 
were found in non-neuronal cells as well, 

including astrocyte diversity and divergent 
molecular phenotypes between mouse 
and human that correlate with known 
morphological specializations in primate 
astrocytes36,74,84. Such similarities and 
differences between cell types across species, 
as well as challenges created by graded or 
developmental variations in features, could 
also be better captured by a probabilistically 
defined and hierarchically organized 
cell-type taxonomy.

A probabilistic and hierarchical defini-
tion of cortical cell types
Examining the current transcriptomic 
evidence, in some cases we find highly 
distinct cell types based on robust 
similarities of the transcriptome and other 
measurable cell attributes, as exemplified 
by the phenotypic homogeneity of 
neocortical chandelier cells40,85–87 or the 
above-mentioned rosehip cells. On the other 
hand, the existence of cell states, spatial 
gradients of phenotypes and mixtures of 
differences and similarities in cross-species 
comparisons present challenges to a 
discrete and categorical perspective on 
defining cell types. Prematurely adopting 
an inflexible definition of types will obscure 
the significance of observed phenotypic 
variability and its biological interpretation. 
Rather, a plausible way forward is to employ 
a practical or operational quantitative 
definition of a cell type.

Cluster analysis has been used to 
classify cortical neurons according to their 
structural or physiological phenotypes or 
expression of molecular markers13,14,22,31,82,87–90 
and, more recently, transcriptomics36,40,91,92. 
Many unsupervised and supervised 
methods can be used, including multilayer 
perceptrons16, logistic regression16, k-nearest 
neighbors16, affinity propagation93, 
Bayesian classifiers34, naïve Bayes16, topic 
modelling94, t-distributed stochastic 
neighbor embedding (t-SNE)95,96, graph 
theory97 and autoencoders98. These methods, 
building on the existence of statistically 
defined groups or clusters over a set of 
measurable attributes, naturally lead to an 
evidence-based probabilistic definition of 
cell types.

A probabilistic definition of cell types is 
particularly applicable to transcriptomics, 
where the dimension of the underlying 
space is large, the variance comparatively 
high and competing approaches give similar 
results. However, one requires community 
consensus on a rigorous statistical definition 
of transcriptomic types and the description 
of intra- and inter-type variability. Ideally, 
this quantitative definition of a cell type 
would be independent of the statistical 
method used (i.e., robust to different 

methods) and would include a description 
of quantitative metrics such as resolution, 
complexity, variability, uniqueness and 
association of variables with other attributes. 
There are two approaches to find and test 
cluster validity. One is ‘hard’ clustering, with 
clearly defined borders between clusters and 
with each cell strictly assigned to a particular 
type. Alternatively, in ‘soft’ (or ‘fuzzy’) 
clustering, any given cell has a particular 
probability of belonging to a particular 
cluster. Despite the probabilistic nature, 
inter- and intra-cluster distance may still be 
defined for outcome validation. Ultimately, 
the consensus description of cell types may 
form a continuum, beginning with hard and 
ending with soft distinctions among cell 
types, with an ambiguous transition between 
these extremes.

One natural approach to represent a 
transcriptomic taxonomy is to adopt a 
hierarchical framework. Cluster analysis is 
well suited to this, as its connectivity-based 
methods generate a tree-like representation 
of clusters99. This approach follows the 
historical tradition of using cladistics to 
classify organisms, assuming common 
ancestors in their evolution and 
synapomorphies (shared derived traits) 
among related clades. While statistical 
clusters do not presume any hierarchy in the 
structure of the data, biological systems have 
a temporal evolution as one of their essential 
features and makes temporally based 
hierarchies natural100. The evolutionary or 
developmental history of a neural circuit 
implies earlier stages, which are often less 
specialized and represent common ancestors 
of later states101. Indeed, a hierarchical 
organization of existing transcriptomic cell 
types data appears to mirror developmental 
principles and spatiotemporal organization 
in the neocortex (see above). Another 
advantage of casting the cell type 
classification as a cladistic one is that the 
lumping–splitting tension maps itself 
naturally as a distinction between different 
levels of the hierarchical tree, since one can 
split a group into subgroups at a lower level 
of the hierarchy to reflect data obtained in 
different physiological or developmental 
conditions. This provides an effective and 
objective framework to quantitatively 
evaluate lumper-vs-splitter discussions.

But hierarchical transcriptomic 
relationships may not be easily represented 
as a simple tree-like structure. Rather, they 
may have complex inclusion–exclusion 
and class relationships and may be 
more amenable to graph-based or other 
set-theoretic constructions. Indeed, the 
space of the transcriptomes for cortical 
cell types could be visualized as a complex, 
high-dimensional landscape with isolated 
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peaks of expression for a given cell type but 
also valleys and gradients between more 
weakly defined classes, which could be 
described alternatively as types or states. 
Such complexity can be described using, for 
example, the concept of cell-type attractors28, 
or using the distinction between core and 
intermediate cells40 or the description of 

a cell type as a continuous trajectory in 
transcriptomic space102. A robust statistical 
framework that enables a quantitative 
definition of cell type (or tendency to be a 
type) is clearly needed.

A final, and key, question is how to 
ensure that any given classification or 
taxonomy is valid. The goal is not defining 

a classification system per se, but to create 
a comprehensive description of cellular 
diversity in the neocortex. One needs to 
ensure that the experimental method will 
indeed capture all of the cell types present, 
that the classification is complete and that 
the types are defined correctly. For any 
classification to be valid, it is critical to 
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ensure accuracy and correctness. First, it 
is imperative to seek internal statistical 
robustness for identified clusters, using 
different statistical methods22,103. Second, 
external validation with orthogonal 
datasets is critical. Multimodal datasets 
are particularly important in this regard, 
as they enable cross-comparisons between 
classifications based on different types of 
data, for example, molecular, physiological 
or anatomical22,31, patch-seq76, or spatial 
transcriptomics methods54 (Fig. 3a–c) can 
enable this, defining functionally relevant 
levels of granularity. Finally, a probabilistic 
definition, particularly with a Bayesian 
framework, can be tested by generatively 
building computational models of each cell 
type and comparting them with the real 
data, thus providing some performance 
metrics on the algorithms. Using these 
criteria, robustness, reproducibility and 
predictive power can be measured and 
different approaches compared, as is 
normally done in machine learning16.

A unified ontology and nomenclature 
of cortical cell types
To truly gain community adoption, the 
data-driven transcriptomic classification of 
cortical cell types requires a formal unified 
cell type classification, a taxonomy and a 
nomenclature system17,20,90 whose principles 
are generalizable to other systems. Names 
are important: as an old Basque proverb 
states, ‘izena duen guzia omen da’ or ‘that 
which has a name exists’, and a similar 
Chinese one says ‘the beginning of wisdom 
is to call things by their right names’. This 
classification should aim to be a consensus 
one that incorporates the richness of data 
accumulated by different groups and be 
presented in a curated output that is public, 
easily accessible and has revisions managed 
by a curation committee of experts. Creation 
of such an ontology is a serious project in 
data organization that can build on prior 
efforts in cell ontologies104–106, as well as 
best practices established by the ontology 
development community107 (see Open 
Biomedical Ontology Foundry, http://www.
obofoundry.org).

A true, data-driven transcriptomic 
taxonomy poses a series of challenges 
that have not yet been taken on by the 
cell ontology community, but that are 
surmountable. One challenge is that 
transcriptomically similar cell types can 
exist in multiple anatomical locations. Thus, 
transcriptomic types need to be related to 
proper levels of the anatomical structure. 
Prominent gradients across cortical areas 
pose another challenge to define in a 
taxonomy. While any given cortical region 
contains some number of transcriptomic 

types, it seems likely that many of these 
types will vary in a somewhat continuous 
fashion across cortical areas and possibly 
also across species (Fig. 4a,b). Likewise, 
the classification system should also have 
a temporal component to capture the 
developmental trajectory from progenitor 
cell division to a terminally differentiated 
state. Cells can be quantitatively defined 
by their position on that developmental 
or spatial gradient. Finally, aligning across 
species is quantitatively possible now, but 
this alignment may only be possible at 
different levels of granularity with increasing 
evolutionary distance. The benefits of 
creating a unified reference ontology across 
these biological axes will be large, but it will 
be a serious community effort to design a 
system that can accommodate them.

Following the genetic classification 
paradigm proposed here, there are many 
lessons to learn from genomics. For 
example, the reference classification could 
be iteratively updated and refined with 
subsequent accumulation of data108 like 
genome builds, which changed in the early 
years but have become increasingly stable. 
As in current gene nomenclature, an official 
symbol with multiple aliases can link cell 
types to commonly used terminology 
relating to cellular anatomy or other 
phenotypes. This nomenclature should be 
portable across species, with orthologous 
cell types having common names, much as 
current gene symbols refer to orthologous 
genes. For the cell type classification 
to be useful like the genome has been, 
computational tools conceptually similar 
to BLAST alignment tools109 for mapping 
sequence data, need to be developed to 
allow researchers to quantitatively map their 
data to this reference classification. Finally, 
continuing the analogy with genomics, just 
as there are different versions of genome 
builds for different purposes (for example, 
with more or less manual curation), one 
could consider different versions of cortical 
cell type taxonomies, with varying levels of 
splitting or lumping; spatial, temporal or 
evolutionary criteria; or even some manually 
curated by experts, but under a unified 
framework of probabilistic definition of  
cell types.

Nomenclature also poses a challenge. 
Currently, the lack of standardized 
nomenclature makes it difficult to track 
and relate cell types across different studies. 
One natural idea with a genetically based 
paradigm is to name cell types on the basis 
of the best defining genes for each cell 
type, as is currently commonly done36,61,110. 
However, the most specific genes are not 
always detected in every cell of a cluster, and 
often the genes that best define a cell type 

in one species are not conserved in other 
species. The traditional way of naming cell 
types is by their anatomical features (such 
as chandelier, double-bouquet, basket, 
Martinotti, pyramidal cells), and it would 
be desirable to incorporate these short and 
widely-used names into a nomenclature 
when possible, to seek consistency with 
the vast literature on neocortical cell 
types. However, anatomical features, such 
as horsetail axons, may also vary across 
species17. Also, for newly identified cell 
types, anatomical information is often not 
available and naming them by marker genes 
will be more practical.

Adopting a more abstract nomenclature 
not based on anatomical features or 
individual marker genes could make it 
more flexible, more easily applicable across 
species and more compatible with other 
tissues outside the cortex or the brain. One 
idea for a cell-type nomenclature system 
is to build on gene nomenclature, treating 
transcriptomic cell clusters as sequence 
data (partially implemented for Allen 
Institute datasets; https://portal.brain-map.
org/explore/classes/nomenclature). Every 
cell cluster from a dataset or analysis 
would get a unique accession ID. Robust 
and reproducible clusters would have 
official cell type names or symbols, as 
well as any number of aliases that could 
represent different existing nomenclatures 
or historical names. In addition to cell 
types, higher-order classes (for example, 
caudal ganglionic eminence (CGE)-derived 
GABAergic interneurons, GABAergic 
interneurons, neurons) could be named as 
well, and both types and classes would be 
matched across species at the level (type, 
class) at which they can be aligned.

A cell-type knowledge graph for com-
munity data aggregation
Defining the cell types of the cortex 
(or other brain structures) serves as a 
foundation for aggregating information 
about their function. By analogy to the 
genome, the definition of genes has allowed 
a massive integration of information about 
their usage, function and disease relevance 
with a wide range of databases. On the other 
hand, probabilistically defined cell types are 
not the same as deterministically defined 
protein-coding regions of the genome, and 
we can expect that our understanding of 
cell types and their functional relevance 
will change as more information becomes 
available. A more flexible way to organize 
our knowledge and understanding of 
cell types would be as a living, updatable 
framework, one allowing reference, 
query and inference. An online-based 
data aggregation platform could also 
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have a significant sociological impact in 
neuroscience by encouraging collaborative 
participation.

One example of an appropriate data 
structure for such a community platform is 
a ‘knowledge graph’, a widely used tool in 
the tech industry and computer science as a 
platform for data aggregation (Fig. 5).  
A knowledge graph is a relational data 
structure in which nodes represent entities 
(such as cell types and their attributes) and 
the links, or edges, between them represent 
their relational and statistical associations. 
There is a measurable graph-theoretic 
distance between nodes based on probable 
associations and known relationships. The 
cortical cell knowledge graph could be 
initialized with standardized transcriptomics 
data, after which other data modalities and 
related taxonomies could be readily mapped 
onto the graph to capture anatomical, 
electrophysiological, developmental and 
other cell properties. For example, important 
contributors to cell identity, determined 
by cellular interactions, splicing, local 
translation, protein phosphorylation, etc., 
may not be readily captured by scRNA-seq 

at present, but could be measured in 
future CAP datasets, which could then be 
added to the knowledge graph. In such 
a knowledge graph, there are two basic 
use-cases as new data becomes available. 
First, one can use it to identify known cell 
types and their properties in new datasets. 
With a probabilistic or Bayesian definition, 
each new cell will be assigned a probability 
of belonging to a particular type in the 
graph. Second, the graph can be manually 
or automatically updated, following 
conventional optimization algorithms, as 
new data can change node identities and 
distances with respect to one another.

The proposed cell-type knowledge 
framework would represent a living and 
updatable resource that maintains an 
actively derived and flexible ontology of 
cortical cell types, benefitting from present 
active ontology efforts. This standardized 
database could be powered by open-source 
algorithms and managed and curated by 
database administrators. It would be a 
dynamic database with query capability, 
but would only accept peer-reviewed 
published data in a standardized fashion 

and nomenclature, providing a common 
denominator for the research in the field, 
integrating quantitative and qualitative 
cell-type classification, and allowing for 
updates, subject to review and validation. 
Computational engines would allow new 
data to be compared and allow users 
to query the current state of cell-type 
understanding from the perspective of 
their new data, assigning the most likely 
type to multi- or unimodal datasets based 
on similarities to the current framework’s 
knowledge. In addition to supporting 
literature reference, the dynamic framework 
might include online forums for scientific 
discussion and education. Ultimately, a 
cell-type community knowledge framework 
would be a dynamic and living resource that 
researchers, clinicians and educators could 
refer to as the benchmark resource for cell 
types in the cortex, promoting collaborative 
participation in the field.

Maintaining and updating the 
classification
The classification, nomenclature and 
associated knowledge graph could be 
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managed by a committee of experts 
representing the breadth of approaches and 
disciplines in the field. Such a committee 
would be charged with designing the 
statistical classification model to sustain 
a basic taxonomy; the type of open 
platform to use for the knowledge graph; 
the rules by which this taxonomy can be 
updated and revised; the quality control or 
peer-reviewed criteria; and the metadata 
to be added. While the knowledge graph 
could continually update itself automatically, 
as new data is imported, different curated 
versions of the graph might be released in 
regular updates. This committee, arising 
from expert volunteers, could also help with 
vetting of a unified nomenclature of cortical 
cells that is succinct, useful and informative, 
as well as methods by which community 
input would be incorporated in a fair and 
efficient fashion.

Potentially, such a committee might 
be established and supported through 
existing organizations or consortia 
with interest in cell type classification, 
such as the NIH BRAIN Initiative Cell 
Census Network (BICCN; https://www.
biccn.org), the NeuroLex–International 
Neuroinformatics Coordinating Facility 
(INCF; http://130.229.26.15/news/activities/
our-programs/pons/neurolex-wiki.
html), the Neuroscience Information 
Framework (NIF; https://neuinfo.org), 
the Human Brain Project (HBP; https://
www.humanbrainproject.eu/), the Human 
BioMolecular Atlas Program (HuBMAP; 
https://commonfund.nih.gov/hubmap) or 
the Human Cell Atlas (HCA; https://www.
humancellatlas.org/). Some of these groups 
are already chartered with mapping the cell 
types of the nervous system or other organs 
in the body and may have resources to build 
the backend technological infrastructure 
needed for the knowledge graph.

Regardless of who supports and 
maintains this key infrastructure, it is 
critical that the efforts be managed through 
open communication with the community. 
A public consortium will be a logical 
organizational structure for channeling 
diverse inputs and will also adequately 
represent the wider community, reflecting 
cultural, geographic, ethnic and gender 
diversity. Strong community engagement 
will ensure wide acceptance and ensure  
that these standards are adopted widely, 
within and outside of the neocortex 
specialist field.

A community-based taxonomy and 
nomenclature of cortical cell types
To conclude, we think that the field of 
neocortical studies is ready for a synthetic, 
principled classification of cortical cell types, 

based on single-cell transcriptomic data 
and anchored on quantitative criteria that 
operationally define cell clusters based on 
their statistical and probabilistic grouping. 
Although molecularly driven initially, this 
taxonomy should be revised and modified as 
additional CAP datasets become available, 
becoming a true multimodal classification 
of cortical cell types. We view this core 
classification as potentially valid for all 
mammalian species and also as likely 
applicable to homologous structures in 
other vertebrates, as a broad framework to 
encapsulate evolutionary conservation with 
species specialization. Indeed, only with 
such a systematic approach to comparing 
cell types across species will it be possible to 
understand how cell type diversity evolved 
in the cerebral cortex.

This taxonomy will only be useful and 
successful if adopted by the community. So, 
in addition to the nomenclature, a series of 
research tools should be developed, ideally 
by a community consortium, to facilitate 
similar experimental access to these cell 
types by the broader range of investigators. 
We envision molecular and genetic tools, 
such as standard sets of antibodies and RNA 
probes to identify key molecular markers 
for each cell type, as well as cell or mouse 
lines that are used as resources for the entire 
community. Statistical tools to enable direct 
comparisons among datasets, and to enable 
mapping new datasets to reference datasets, 
are essential. An open informatics backbone 
needs to be developed as an essential part of 
the taxonomy, as well as visualization and 
analysis tools that take advantage of this 
taxonomy and allow scientists to explore the 
data, add to the knowledge base and achieve 
new knowledge.

In addition, we propose that the 
community input to support this taxonomy 
and enable its future revisions be channeled 
into an open platform, a knowledge graph, 
as is becoming increasingly common in 
community-led data science. Aggregation 
of knowledge through data graphs, now 
a common practice in the tech industry, 
will accelerate the dissemination of 
knowledge and could avoid the ‘publication 
graveyard’, where data are stored away 
in siloed journal articles disconnected 
from the rest of the field. Anchoring this 
taxonomy and knowledge graph, a unified 
new nomenclature of cortical cell types 
valid across species is needed to centralize 
efforts in the field, with a generalizable 
framework to integrate with other cell-type 
classifications. We view the establishment 
of a common nomenclature as an essential 
step to provide a standardized language that 
enables the meaningful aggregation and 
sharing of data.

If successful, this community-based 
classification effort, joined by a common 
nomenclature and nourished by the 
knowledge graph, could be extended and 
generalized to other parts of the brain or 
of the body. In this sense, the classification 
of neocortical cell types, a field with a long 
tradition and multidimensional approach 
to a central problem in neuroscience, could 
be an ideal test case to explore this novel 
organization of knowledge in neuroscience 
and, more generally, in biology. ❐
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