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A B S T R A C T   

The Parieto-Frontal Integration Theory (P-FIT) predicts that human intelligence is closely linked to structural and 
functional properties of several brain regions mainly located in the parietal and frontal cortices. It also proposes 
that solving abstract reasoning tasks involves multiple processing stages and thus requires the harmonic interplay 
of these brain regions. However, empirical studies directly investigating the relationship between intellectual 
performance and the strength of individual functional connections related to the P-FIT network are scarce. Here 
we demonstrate, in two independent samples comprising a total of 1489 healthy individuals, that fMRI resting- 
state connectivity, especially between P-FIT regions, is associated with interindividual differences in matrix 
reasoning performance. Interestingly, respective associations were only present in the overall samples and the 
female subsamples but not in the male subsamples, indicating a sex-specific effect. We found five statistically 
significant connections which replicated across both samples. These were constituted by BAs 8, 10, 22, 39, 46, 
and 47 in the left as well as BAs 44 and 45 in the right hemisphere. Given that many of these brain regions are 
predominantly involved in language processing, we hypothesized that our results reflect the importance of inner 
speech for solving matrix reasoning tasks. Complementary to previous research investigating the association 
between intelligence and functional brain connectivity by means of comprehensive network metrics, our study is 
the first to identify specific connections from the P-FIT network whose functional connectivity strength at rest 
can be considered an indicator of intellectual capability.   

1. Introduction 

Based on reliable scientific evidence accumulated over the course of 
more than a century, it is beyond dispute that individuals differ with 
regard to their intellectual abilities (Deary, 2012; Deary, Penke, & 
Johnson, 2010; Spearman, 1904). Since the dawn of intelligence 
research, it has been of considerable interest to establish a link between 
intellectual ability and the various properties of its underlying neural 
substrates within the human brain. Technical developments during the 
second half of the 20th century, such as magnetic resonance imaging and 
positron emission tomography, enabled researchers to assess a wide 

variety of structural and functional brain properties in vivo and inves
tigate their relationship with intellectual abilities. According to evi
dence from this line of research, intelligence has been associated with 
numerous neural characteristics including brain volume (McDaniel, 
2005; Pietschnig, Penke, Wicherts, Zeiler, & Voracek, 2015), cortical 
thickness (Karama et al., 2011; Narr et al., 2007), white matter integrity 
(Penke et al., 2012; Ritchie et al., 2015), structural connectivity (Li 
et al., 2009), task-based (Avery et al., 2020; Frith et al., 2021; Haier 
et al., 1988; Neubauer & Fink, 2009) and resting-state brain activity 
(Avery et al., 2020; Ezaki, Fonseca Dos Reis, Watanabe, Sakaki, & 
Masuda, 2020), as well as cortical microstructure (Genc et al., 2018). In 
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line with the ever-growing arsenal of in vivo imaging techniques, the 
focus of neuroscientific approaches to intelligence research has shifted 
from the overall brain to single brain regions. However, converging 
evidence from a large body of literature indicates that intelligence is not 
tied to one particular brain region but related to the anatomical prop
erties and functional activation patterns of multiple regions spread 
throughout the brain. 

In this regard, Jung and Haier (2007) conducted a review of 37 
studies featuring data obtained by various neuroimaging techniques. 
Their efforts led to the proposal of the Parieto-Frontal Integration The
ory of intelligence (P-FIT). From the combined evidence, Jung and Haier 
identified a set of 14 Brodmann areas (BAs), in which different neural 
properties had been consistently linked to intelligence. These were 
mainly located in the dorsolateral prefrontal cortex, in the parietal 
lobule, in the anterior cingulate cortex and regions within the temporal 
and occipital lobes. The authors assumed that all P-FIT areas, even 
though they were identified independently of each other, had to be 
connected through a widespread network. Jung and Haier emphasized 
the fact that solving an abstract reasoning tasks involves multiple pro
cessing stages and thus requires the harmonic interplay of multiple brain 
regions. In more detail, the P-FIT model argues that intelligent thinking 
originates from the successful recognition and elaboration of informa
tion from sensory cortices. Consequentially, extrastriate cortex (BAs 18, 
19) and temporal regions (BAs 21, 37) are hypothesized to be of prime 
importance for these first steps. Subsequently, structural symbolism and 
abstraction are believed to emerge from the supramarginal (BA 40), the 
superior parietal (BA 7), and the angular gyrus (BA 39). Following this, 
potential solutions to a given problem are thought be generated in 
frontal regions (BAs 6, 9, 10, 45, 46, 47) and fed forward to the anterior 
cingulate cortex (BA 32), which engages in a final response selection. 
This particular set of BAs was partially replicated and extended in a 
recent meta-analysis by Basten, Hilger, and Fiebach (2015). They 
identified six supplementary regions (BAs 8, 20, 24, 31, 42, 44) that 
were added to the original P-FIT network. 

Given our present knowledge about the individual functions of P-FIT 
regions, it may seem plausible that they are organized in the network 
structure proposed by Jung and Haier (2007). However, this assumption 
has only been validated indirectly by previous research. The majority of 
these studies aimed to investigate the association between intelligence 
and functional brain network connectivity by means of fMRI resting- 
state data. This approach emanates from the idea that spontaneous 
fluctuations in the blood oxygenation level dependent (BOLD) signal 
contain information about the quality of evoked brain activity, e.g. 
mental effort exerted during reasoning (Fox & Raichle, 2007; Tavor 
et al., 2016). For example, Song et al. (2008) employed resting-state data 
to relate the functional connectivity strength between bilateral dorso
lateral prefrontal cortices and various other brain regions to general 
intelligence. The authors observed multiple statistically significant 
connections, which were exclusively constituted by BAs from the 
extended P-FIT model (BAs 9, 10, 40, 46). In another study, van den 
Heuvel, Stam, Kahn, and Hulshoff Pol (2009) followed a graph theo
retical approach in order to investigate the association between func
tional brain network properties and intellectual performance. Results 
showed a negative correlation between intelligence test scores and the 
characteristic path length of the resting-state brain network, indicating 
that intelligence is a function of how efficiently information is integrated 
between multiple brain regions. Again, these findings were mainly tied 
to P-FIT areas (BAs 7, 9, 10, 31 39, 40, 44, 45), albeit with an exploratory 
statistical threshold. In contrast, Hilger, Ekman, Fiebach, and Basten 
(2017a) were not able to replicate these findings. With regard to the 
entire resting-state brain network, the authors did not observe a sig
nificant association between general intelligence and global efficiency, a 
graph measure inversely related to characteristic path length. In view of 
individual network nodes, three brain areas showed significant effects 
but only one of them, namely the dorsal anterior cingulate cortex (BA 
32), could clearly be assigned to the P-FIT model. Yet another study by 

Hilger, Ekman, Fiebach, and Basten (2017b) employed graph analysis to 
investigate whether and how the brain's modular organization is asso
ciated with general intelligence. Again, no significant effects were found 
for global modularity features of the resting-state brain network. How
ever, the authors identified several network nodes, in which between- 
module and/or within-module connectivity could be related to general 
intelligence. The majority of these nodes comprised areas from the 
extended P-FIT model (BAs 6, 7, 8, 9, 10, 18, 39, 40, 44, 47). One of the 
largest studies investigating the association between general intelli
gence and global functional network efficiency by means of graph 
analysis was conducted by Kruschwitz, Waller, Daedelow, Walter, and 
Veer (2018). The authors employed functional imaging data provided by 
the Human Connectome Project (Van Essen et al., 2013) and used 
various network definition schemes to relate measures of general, 
crystallized, and fluid intelligence to different global graph metrics, 
namely global efficiency, characteristic path length, and global clus
tering coefficient. Contrary to van den Heuvel et al. (2009), but in line 
with Hilger et al. (2017a) and Hilger et al. (2017b), the global approach 
used by Kruschwitz et al. (2018) did not yield any robust associations 
and only very weak non-significant effects. Using independent compo
nent analysis, Vakhtin, Ryman, Flores, and Jung (2014) managed to 
identify a total of 29 functional networks in two independent sets of 
fMRI data. The first set was obtained while participants were at rest and 
the second while participants were solving a matrix reasoning task. Out 
of all functional networks, 26 were present in both datasets, supporting 
the idea that spontaneous fluctuations in the BOLD signal are informa
tive of task-based brain activity. Notably, 10 functional networks, which 
were broadly consistent with the P-FIT model, were correlated with the 
matrix reasoning test scores. Santarnecchi et al. (2017) utilized fMRI 
resting-state data from a large sample in order to investigate the prop
erties of a functional network (BAs 6, 7, 9, 10, 18, 32, 40, 46, 47) un
derlying fluid intelligence (Santarnecchi, Emmendorfer, & Pascual- 
Leone, 2017). Results showed that left inferior frontal (BAs 6, 9) and 
left inferior parietal regions (BA 40) exerted high connectivity with the 
rest of the network, indicating a pivotal role of these P-FIT areas in fluid 
intelligence. Furthermore, the authors generated a seed-based connec
tivity map between the fluid intelligence network and the rest of the 
brain. The respective map exhibited a high degree of similarity with 
three other major parieto-frontal resting-state networks. Dubois, Galdi, 
Paul, and Adolphs (2018) investigated the relationship between general 
intelligence and functional connectivity by analyzing fMRI resting-state 
data provided by the Human Connectome Project (Van Essen et al., 
2013). The authors demonstrated that about 20% of variance in general 
intelligence can be explained when considering the entire connectivity 
matrix of each participant. When restricting the analysis to the most 
predictive edges, particular resting-state networks, namely the fronto- 
parietal network, the default mode network, the control network, and 
the visual network, turned out to carry more information than others. 
Respective results were found to be in general agreement with the P-FIT 
model. Another study employing the Human Connectome Project's 
dataset was conducted by Finn et al. (2015). More specifically, the au
thors used fMRI resting-state data recorded on two separate days to 
demonstrate that it is possible to match the two connectivity matrices of 
a participant with more than 90% accuracy. When restricting this 
identification procedure to edges from parieto-frontal regions, accuracy 
increased to almost 100%. In addition to that, the authors used the 
resting-state data to create linear regression models for the purpose of 
predicting matrix reasoning performance. Predicted scores were highly 
correlated with observed scores. Again, this association was mainly 
driven by edges constituting parieto-frontal networks similar to the P- 
FIT model. 

Based on these findings, one can conclude that the general idea of P- 
FIT areas constituting a functionally connected network rests on a solid 
foundation of empirical evidence. However, none of the aforementioned 
studies was exclusively targeted at investigating the association between 
intelligence and the properties of individual functional connections from 
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the P-FIT network. Consequentially, previous research is limited to some 
extent. For example, Song et al. (2008) refrained from examining a 
network spanning the whole brain but focused on functional connec
tivity emanating from a priori defined seed regions in the dorsolateral 
prefrontal cortices. Other studies used graph theoretical measures in 
order to quantify functional connectivity (Hilger et al., 2017a, 2017b; 
van den Heuvel et al., 2009). Graph theory offers various metrics which 
capture the overall quality of a brain network or highlight the impor
tance of particular nodes that contribute to the network's connectivity. 
However, these metrics are computed by aggregating information from 
all individual connections constituting the brain network. Hence, results 
obtained by this method only provide limited insight regarding the the 
properties of individual connections. In many cases (Dubois et al., 2018; 
Finn et al., 2015; Santarnecchi, Emmendorfer, & Pascual-Leone, 2017; 
Santarnecchi, Emmendorfer, Tadayon, et al., 2017), other networks than 
the P-FIT network were used as the prime object of investigation and P- 
FIT was merely used as the theoretical framework to interpret results, e. 
g. functional connectivity patterns observed in parieto-frontal regions. 
Due to these reasons, it remains unclear whether intelligence is related 
to the functional connectivity strength of individual connections nomi
nated by the P-FIT model. 

With the study at hand, we aimed to close this gap of knowledge by 
testing following three hypotheses. First, the P-FIT model promotes the 
idea that brain regions related to intelligence are organized in a func
tional network through which information is exchanged. Based on the 
research presented above, it is conceivable that efficient information 
exchange relies on a brain infrastructure that fosters high functional 
coherence between brain regions even in their resting state. Following 
this assumption, we hypothesized that higher BOLD signal correlations 
observed at rest would be associated with better performance on a 
matrix reasoning test. Hence, we analyzed the resting-state properties of 
functional connections included in the P-FIT network, but also of those 
spanning the rest of the brain. We expected significant associations be
tween functional connectivity strength and matrix reasoning perfor
mance to be predominantly exhibited by connections from the P-FIT 
network and to a lesser degree by connections unrelated to the P-FIT 
model. 

Second, Jung and Haier (2007) suggested a serial flow of information 
through the P-FIT network when engaging in abstract reasoning. With 
regard to this concept, we hypothesized that the majority of connec
tions, expressing significant associations between functional connec
tivity strength and matrix reasoning performance, would conform to this 
pattern. In more detail, we expected the trajectory of respective con
nections to match one of the steps proposed by the serial flow infor
mation model, i.e. from visual/temporal areas to parietal areas, from 
parietal areas to frontal areas, and from frontal areas to the cingulate 
cortex. Accordingly, we assumed that the strength of functional con
nections omitting some of the aforementioned steps, e.g. by directly 
linking visual and frontal areas, would not be significantly associated 
with matrix reasoning performance or exhibit weaker correlations. In 
previous research, functional resting-state correlations have already 
been used to identify serial flow of information in the visual system 
(Genc, Schoelvinck, Bergmann, Singer, & Kohler, 2016). 

Third, Jung and Haier (2007) did not make any assumptions 
regarding the absence of particular functional connections within the P- 
FIT network. Intellectual performance can benefit from an exchange of 
relevant information between brain areas since it has a positive impact 
on signal-to-noise ratio. However, it has also been suggested that mental 
capacity might be fostered by neural architectures built to filter out or 
shield themselves against irrelevant information (Genc et al., 2018). 
Avoiding unnecessary crosstalk between specific brain areas might lead 
to substantial decreases in a system's level of noise. Respective processes 
should be represented by negative correlations between intelligence and 
the functional connectivity strength between two brain areas. Given that 
such inverse relationships have been reported in previous research 
(Hilger et al., 2017b; Song et al., 2008), we assumed that they should 

also be found for the P-FIT network. Hence, we hypothesized to observe 
both positive and negative associations in our analyses. 

In order to test these hypotheses, we employed data from two large 
samples, one recruited by ourselves and one provided by the Human 
Connectome Project (Van Essen et al., 2013). To the best of our 
knowledge, we present the first study to directly examine all possible 
functional connections from the entire Brodmann atlas in order to 
investigate whether matrix reasoning performance is significantly 
associated with the functional connectivity strength of individual con
nections from the P-FIT network. 

2. Materials and methods 

2.1. Participants in the S498 sample 

The first sample, hereinafter referred to as sample S498, was 
recruited at Ruhr-University Bochum in Germany. Subjects were either 
paid for their participation or received course credit. All of them were 
naive to the purpose of the study and had no former experience with the 
administered matrix reasoning test. All participants had normal or 
corrected-to-normal vision and hearing, matched the standard inclusion 
criteria for fMRI examinations, and declared to have no history of psy
chiatric or neurological disorders. Each participant completed both the 
matrix-reasoning test and neuroimaging session described below. In 
total, we recruited 557 participants. Within this group, 503 participants 
were right-handed and 54 (9.69%) were left-handed as measured by the 
Edinburgh Handedness Inventory (Oldfield, 1971). This ratio is repre
sentative of the human population (Raymond & Pontier, 2004). Given 
that handedness has been shown to affect brain organization (Amunts 
et al., 1996; Amunts, Jäncke, Mohlberg, Steinmetz, & Zilles, 2000), we 
decided to exclude all left-handed subjects from our analysis. Within the 
remaining group of 503 participants, matrix reasoning test scores were 
checked for outliers as defined by Tukey's fences (Tukey, 1977), i.e. 
observations 1.5 interquartile ranges below the first or above the third 
quartile, and respective cases were removed from the dataset accord
ingly. As a consequence, five participants had to be excluded. Thus, all of 
the reported analyses were performed on the remaining data from 498 
participants (245 males) between 18 and 72 years of age (M = 27.41, SD 
= 9.37). We utilized G*Power (Faul, Erdfelder, Buchner, & Lang, 2009) 
in order to compute the achieved power of our final sample post hoc. The 
analysis was based on a bivariate normal model for correlations and an 
effect size of r = 0.15 since this was about the average magnitude of 
correlation coefficients in the S498 sample. We set α to 0.05 and 
determined testing to be two-tailed. Based on these parameters, the 
analysis yielded a statistical power of 0.92, which indicates sufficient 
sample size. The study was approved by the local ethics committee of the 
Faculty of Psychology at Ruhr-University Bochum. All participants gave 
their written informed consent and were treated in accordance with the 
declaration of Helsinki. 

2.2. Participants in the S991 sample 

In order to validate the results obtained from the S498 sample, we 
downloaded data provided by the Human Connectome Project, namely 
the S1200 release (Van Essen et al., 2013). We obtained 1088 partici
pants with data suitable for our analyses from the “Structural Pre
processed” and “Resting State fMRI 1 Preprocessed” packages. As with 
sample S498, we removed all left-handed participants (n = 97, 8.9%) 
from our analysis. Matrix reasoning test scores of the remaining par
ticipants were checked for outliers but none were found. Thus, no 
further participants were excluded and all of the reported analyses were 
performed on data from 991 subjects (447 males) between 22 and 36 
years of age (M = 28.78, SD = 3.70). Again, we utilized G*Power in 
order to compute the statistical power achieved by this sample post hoc. 
Based on the sample size of 991 participants and the same parameters 
used for sample S498, the analysis resulted in an achieved power that 
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was above 0.99. 

2.3. Acquisition of behavioral data in the S498 sample 

The acquisition of behavioral data was conducted in a group setting 
of up to six participants, seated at individual tables, in a quiet and well- 
lit room. Matrix reasoning performance was measured with a German 
matrix-reasoning test called Bochumer Matrizentest (BOMAT) (Hossiep, 
Hasella, & Turck, 2001), which is widely used in neuroscientific 
research (Genc et al., 2018; Klingberg, 2010; Oelhafen et al., 2013). The 
test examines non-verbal mental abilities that contribute to intelligence 
and is similar to Raven's Advanced Progressive Matrices (Raven, Raven, 
& Court, 2003). We conducted the “advanced short version” of the 
BOMAT, which has the advantage of high discriminatory power in 
samples with generally high intellectual abilities, thus avoiding possible 
ceiling effects (Genc et al., 2018). The BOMAT inventory comprises two 
parallel test forms (A and B) with 29 matrix-reasoning items each. 
Participants had to complete only one of the two test forms, which were 
randomly assigned. Split-half reliability of the BOMAT is 0.89, Cron
bach's α is 0.92 and parallel-forms reliability between A and B is 0.86 
(Hossiep et al., 2001). Additionally, convergent and predictive validity 
are given for both BOMAT test forms since they are strongly correlated 
with other intelligence inventories (r = 0.59), tests of perceptual speed 
(r = 0.51), and German high school GPA (r = − 0.35) (Hossiep et al., 
2001). The recent norming sample consists of about 2100 individuals 
with an age range between 18 and 60 years and equal sex 
representation. 

2.4. Acquisition of behavioral data in the S991 sample 

In sample S991, matrix reasoning performance was measured with 
the Penn Matrix Analysis Test (PMAT24) (Moore, Reise, Gur, Hako
narson, & Gur, 2015). This instrument is included in the Computerized 
Neuropsychological Test Battery provided by the University of Penn
sylvania (PennCNP). The PMAT24 is an abbreviated version of the Ra
ven's Progressive Matrices and includes 24 items of increasing difficulty. 
Each matrix pattern is made up of 2 × 2, 3 × 3, or 1 × 5 arrangements of 
squares with one of the squares missing. The participant must pick one 
of five response choices that best fits the missing square on the pattern. 
There is no time limit to the completion of the test, although the task 
discontinues if the participant makes five incorrect responses in a row. 
The PMAT24 has two test forms of which the Human Connectome 
Project only used one (form A) in order to assess matrix reasoning 
performance. 

2.5. Acquisition of imaging data in the S498 sample 

All imaging data were acquired at the Bergmannsheil hospital in 
Bochum (Germany) using a Philips 3T Achieva scanner with a 32-chan
nel head coil. For the purpose of segmenting brain scans into gray and 
white matter segments as well as for the identification of anatomical 
landmarks, a T1-weighted high-resolution anatomical image was ac
quired (MP-RAGE, TR = 8.2 ms, TE = 3.7 ms, flip angle = 8◦, 220 slices, 
matrix size = 240 × 240, voxel size = 1 × 1 × 1 mm). The acquisition 
time of the anatomical image was 6 min. For the analysis of functional 
connectivity, fMRI resting-state data were acquired using echo planar 
imaging (TR = 2000 ms, TE = 30 ms, flip angle = 90◦, 37 slices, matrix 
size = 80 × 80, resolution = 3 × 3 × 3 mm). Participants were instructed 
to lay still with their eyes closed and to think of nothing in particular. 
The acquisition time of the resting-state images was 7 min. 

2.6. Acquisition of imaging data in the S991 sample 

All imaging data included in the S991 sample were acquired on a 
customized Siemens 3T Connectome Skyra scanner housed at Wash
ington University in St. Louis using a standard 32-channel Siemens 

receive head coil. The Human Connectome Project's imaging hardware 
and protocols are documented elaborately in several publications (Smith 
et al., 2013; Van Essen et al., 2012; Van Essen et al., 2013) as well as the 
reference manual for the S1200 release. Anatomical and functional 
imaging were carried out in the same session with a mock scanner 
practice preceding the anatomical imaging. A T1-weighted high-reso
lution anatomical image was acquired by means of an MP-RAGE 
sequence and the following parameters: TR = 2400 ms, TE = 2.14 ms, 
flip angle = 8◦, matrix size = 224 × 224, voxel size = 0.7 × 0.7 × 0.7 
mm. The acquisition time of anatomical imaging was 7 min and 40 s. 
Functional resting-state imaging was carried out using multiband 
accelerated echo planar imaging with a multiband factor of eight (TR =
700 ms, TE = 33 ms, flip angle = 52◦, 72 slices, matrix size = 104 × 90, 
resolution = 2 × 2 × 2 mm). Cardiac and respiratory signals were 
recorded at a sampling rate of 400 Hz using a pulse oximeter and res
piratory bellows that were fitted to participants prior to the fMRI scans. 
In order to prevent the subjects from falling asleep during scanning, they 
were asked to keep their eyes open and fixate on a white cross while 
thinking of nothing in particular. For each participant, the Human 
Connectome Project provides a total of four 15-min resting-state scans, 
of which the first two scans were recorded during the participant's first 
visit to the scanning site, while the other two were recorded during the 
participant's second visit on a separate day. In order to ensure maximum 
comparability between the S498 and the S991 samples, we refrained 
from analyzing imaging data collected on two separate days and merely 
included the first two scans provided by the Human Connectome Proj
ect. These two scans were acquired with opposite phase-encoding di
rections. Total acquisition time of resting-state fMRI was 30 min. 

2.7. Analysis of imaging data in the S498 sample 

In order to reconstruct the cortical surfaces of the T1-weighted im
ages we used published surface-based methods in FreeSurfer (http 
://surfer.nmr.mgh.harvard.edu, version 5.3.0). The details of this pro
cedure have been described elsewhere (Dale, Fischl, & Sereno, 1999; 
Fischl, Sereno, & Dale, 1999). The automated reconstruction steps 
included skull stripping, gray and white matter segmentation as well as 
reconstruction and inflation of the cortical surface. After preprocessing, 
each individual segmentation was quality-controlled slice by slice and 
any inaccuracies were corrected by manual editing if necessary. In 
addition to gray and white matter masks, FreeSurfer's automated brain 
segmentation also yielded various ventricle masks and a cortical par
cellation based on the PALS-B12 atlas (Van Essen, 2005), which in turn 
is based on the cytoarchitectonic areas defined by Brodmann (1909). It 
has to be noted that there are more sophisticated parcellation schemes 
which comprise a substantially higher number of individual brain re
gions compared to Brodmann's delineation of the cortex (Genc et al., 
2018; Glasser et al., 2016; Power et al., 2011; Shen, Tokoglu, Papade
metris, & Constable, 2013). However, since the original P-FIT model was 
defined using BAs, we decided to utilize the same segmentation in order 
to ensure high comparability between our analyses and the model we 
wanted to investigate. The PALS-B12 atlas was provided in the form of 
annotation files comprising a total of 82 brain regions that had to be 
converted to volumetric masks. In a final step, the two segments delin
eating the overall cortex and white matter as well as the ventricle masks 
and all 82 masks representing single BAs were linearly transformed into 
the native space of the resting-state images (Fig. 1). 

The transformed regions served as anatomical landmarks from which 
average BOLD signal timecourses were extracted. Resting-state data 
were preprocessed using MELODIC, which is part of the FSL toolbox. The 
first two EPI volumes were discarded from each resting-state scan to 
allow for signal equilibration. Motion and slice-timing correction as well 
as high-pass temporal frequency filtering (0.005 Hz) were applied. In 
order to avoid spurious correlations in neighboring voxels, spatial 
smoothing was not applied. 
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2.8. Analysis of imaging data in the S991 sample 

The preprocessing of anatomical and functional data from the S991 
sample was carried out according to the Human Connectome Project's 
minimal preprocessing pipelines (Glasser et al., 2013). Importantly, this 
pipeline also aims to minimize the smoothing from interpolation and 
does not involve any overt volume smoothing. We applied the same 
steps as used for the S498 sample in order to generate volumetric masks, 
representing overall cortex, white matter, ventricles and BAs, from the 
T1-weighted anatomical images. Finally, all respective masks were lin
early transformed into the native space of resting-state images and 
average BOLD signal timecourses were extracted. In order to combine 
our analyses across the two 15-min runs obtained for every participant, 
we followed an approach suggested by the Human Connectome Project 
(Smith et al., 2013) and simply concatenated each timeseries encoded in 
the right-left direction with its respective counterpart encoded in the 
left-right direction. 

2.9. Statistical analysis 

All statistical analyses were carried out using MATLAB version 
R2020b (The MathWorks Inc., Natick, MA). For the purpose of gener
ating functional connectivity matrices and relating them to matrix 
reasoning test scores, we used linear parametric methods. Testing was 
always two-tailed with an α-level of 0.05, which we eventually corrected 
for multiple comparisons using the Benjamini-Hochberg method (Ben
jamini & Hochberg, 1995). For every participant we computed partial 
correlation coefficients between the average BOLD signal timecourses of 
all BAs while controlling for several nuisance variables. We regressed 
out the trajectories of all six motion parameters as well as the mean 

timecourses averaged across voxels representing white matter or 
cerebro-spinal fluid (Genc et al., 2016). This resulted in a symmetrical 
82-by-82 matrix for each participant with partial correlation coefficients 
representing the functional connectivity of 3321 individual resting-state 
connections (one matrix triangle without self-connections on the diag
onal). By applying Fisher z-transformation to all values (Fisher, 1921), 
we ensured that these partial correlation coefficients were normally 
distributed. In order to remove spurious functional connections from our 
analyses, we created a pruned version of each participant's connectivity 
matrix (Song et al., 2008). All network edges, i.e. cells containing 
normalized BOLD signal correlations, that did not reach statistical sig
nificance in 90% of subjects across both samples, were discarded. Only 
the remaining portion of each participant's connectivity matrix was 
considered for further analyses. In the S498 sample, we computed par
tial correlation coefficients between functional connectivity values and 
BOMAT test scores while controlling for the effects of age and in-scanner 
head motion in terms of mean framewise displacement. In the S991 
sample, we proceeded in the same manner but used PMAT24 test scores. 
In both cases, the resulting test statistics were corrected for multiple 
comparisons using the Benjamini-Hochberg method. Finally, all func
tional connections which exhibited significant associations between 
their normalized BOLD signal correlations and the matrix reasoning test 
scores across both samples were subjected to multiple regression anal
ysis. Here, normalized BOLD signal correlations of the selected con
nections served as independent variables and matrix reasoning test 
scores were used as the independent variable. Firstly, single regression 
models including all participants of a sample were computed for the 
S498 and S991 datasets, respectively. Secondly, regression models based 
on randomly picked subsamples with only 75% of subjects were 
computed in iterative fashion (10,000 analyses per group) and test 

Fig. 1. Methodological sequence for the parcellation of brain scans, the computation of resting-state connectivity matrices, and the analysis of associations between 
functional connectivity and matrix reasoning performance. T1-weighted anatomical scans (A) were delineated into 41 areas per hemisphere based on the Brodmann 
atlas implemented in FreeSurfer (B). Respective brain masks were linearly transformed into the native space of resting-state images (C). For the purpose of creating 
functional connectivity matrices (D), partial correlations between the average BOLD signal timecourses of all Brodmann areas were computed. Head movement and 
average BOLD signal timecourses from white matter structures and ventricles were used as controlling variables. Pruned versions of these functional connectivity 
matrices (E) were obtained by removing all cells in which correlation coefficients failed to reach statistical significance (p < .05) in 90% of subjects across both 
samples. The remaining correlation coefficients were subjected to Fisher z-transformations and employed to compute partial correlations with matrix reasoning test 
scores (F). Head movement and age were used as controlling variables. Within the S498 and the S991 sample, analyses were carried out for the entirety of subjects 
and for both sexes separately. 
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statistics were averaged across all iterations. We conducted aforemen
tioned analyses for the entirety of each sample as well as separately for 
male and female participants. 

2.10. Data and code availability 

The data and MATLAB code that support the findings of this study 
are available from the corresponding author upon reasonable request or 
can be downloaded from an Open Science Framework repository [htt 
ps://osf.io/xb4mc/]. The data used for sample S991 are part of the 
S1200 release provided by the Human Connectome Project and can be 
accessed via its ConnectomeDB platform [https://db.humanconnect 
ome.org/]. 

3. Results 

For sample S498, functional resting-state connectivity exhibited by 
3321 individual connections is illustrated as a symmetrical 82-by-82 
matrix in Supplementary Fig. 1. The respective matrix was obtained 
by averaging all individual connectivity matrices from sample S498. In a 
subsequent step, potentially spurious functional connections were 
removed from each participant's connectivity matrix by discarding all 

cells in which normalized BOLD signal correlations failed to reach sta
tistical significance in 90% of subjects across both samples. Thereby, 
2920 individual functional connections were excluded from further 
analysis and only 401 connections (12.07%) remained (counting only 
one triangle of the matrix without self-connections on the diagonal). 
Notably, none of the negative correlation coefficients survived this 
pruning procedure. For sample S498, the pruned version of the mean 
connectivity matrix is presented in Supplementary Fig. 2. In order to test 
whether functional connectivity at rest was associated with matrix 
reasoning performance, we correlated the remaining functional con
nectivity values with BOMAT test scores, while controlling for the effects 
of age and in-scanner head motion (Fig. 2). 

While the resulting partial correlation coefficients were in the range 
of − 0.07 to 0.19 and thus indicated both negative and positive associ
ations, the majority of associations was positive (364 out of 401, 
90.77%). After correcting for multiple comparisons, the partial corre
lation coefficients in 31 functional connections still reached statistical 
significance (7.73%, r = 0.13–0.19). Twenty out of these 31 connections 
were exclusively constituted of BAs from the P-FIT network (64.52%). 
Nine connections ran between a BA from the P-FIT network and a BA 
unrelated to P-FIT (29.03%). Out of all connections for which functional 
connectivity was significantly associated with BOMAT test scores, we 

Fig. 2. Symmetrical 82-by-82 matrix visualizing the association between functional connectivity and matrix reasoning performance for 3321 individual connections 
in sample S498. All cells representing associations that reached statistical significance after correction for multiple comparisons are highlighted with black boxes. 
Significant associations replicating across both samples (S498 and S991) are highlighted with white boxes. Brodmann areas that belong to the extended P-FIT 
network are highlighted in red. Brodmann areas constituting functional connections significantly associated with matrix reasoning performance are framed in black 
and marked by black half circles. LH = left hemisphere, RH = right hemisphere, BA = Brodmann area, MW = medial wall. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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only observed two that did not involve at least one BA from the P-FIT 
network (6.45%). Altogether, we identified 15 intrahemispheric con
nections in the left hemisphere (48.39%), six intrahemispheric connec
tions in the right hemisphere (19.35%), and 10 interhemispheric 
connections (32.26%) (Fig. 3). 

Data from the S991 sample were analyzed in accordance with the 
approach followed for the S498 sample. Again, functional connectivity 
between BAs is illustrated by symmetrical 82-by-82 matrices, one rep
resenting the entire network (Supplementary Fig. 3) and one repre
senting its pruned version (Supplementary Fig. 4). For each of the 401 
individual connections in sample S991 functional connectivity values 
were correlated with PMAT24 test scores, while controlling for the ef
fects of age and in-scanner head motion (Fig. 4). 

As with sample 498, the resulting partial correlation coefficients 
indicated both negative and positive associations, this time in the range 
of − 0.05 to 0.15. Further, the number of connections expressing positive 
associations between functional connectivity and PMAT24 test scores 
(337 out of 401, 84.04%) was comparable to the S498 sample. Forty- 
three of these partial correlation coefficients, all of them positive, sur
vived a correction for multiple comparisons and still reached statistical 
significance (10.72%, r = 0.09–0.15). As with sample S498, most sta
tistically significant connections were exclusively constituted of BAs 

from the P-FIT network (17 out of 43, 39.53%). We found 15 statistically 
significant connections which ran between one BA from the P-FIT 
network and one unrelated BA (34.88%). Lastly, we observed 11 sta
tistically significant connections between BAs completely unrelated to 
the P-FIT network (25.58%). The 43 statistically significant connections 
included 12 intrahemispheric connections in the left hemisphere 
(27.91%), 11 intrahemispheric connections in the right hemisphere 
(25.58%), and 20 interhemispheric connections (46.51%) (Fig. 5). 

Five statistically significant connections were present in both sam
ples. Among these were three intrahemispheric connections in the left 
hemisphere, namely one between BAs 8 and 47 (S498: r = 0.14, p < .01; 
S991: r = 0.09, p < .01), one between BAs 10 and 22 (S498: r = 0.15, p <
.001; S991: r = 0.13, p < .001), and one between BAs 10 and 39 (S498: r 
= 0.14, p < .01; S991: r = 0.12, p < .001). Moreover, there were two 
interhemispheric connections, namely one between BA 46 in the left and 
BA 44 in the right hemisphere (S498: r = 0.17, p < .001; S991: r = 0.10, 
p < .01) as well as one between BA 46 in the left and BA 45 in the right 
hemisphere (S498: r = 0.14, p < .01; S991: r = 0.09, p < .01). The 
connections between BAs 8 and 47 as well as BAs 10 and 39 were 
exclusively constituted by areas nominated by the P-FIT model, whereas 
each of the remaining three connections included one related (BAs 10, 
46) and one unrelated area (BAs 22, 44, 45). In addition to the five 

Fig. 3. Symmetrical 82-by-82 matrix visualizing the association between functional connectivity and matrix reasoning performance for 3321 individual connections 
in sample S991. All cells representing associations that reached statistical significance after correction for multiple comparisons are highlighted with black boxes. 
Significant associations replicating across both samples (S498 and S991) are highlighted with white boxes. Brodmann areas that belong to the extended P-FIT 
network are highlighted in red. Brodmann areas constituting functional connections significantly associated with matrix reasoning performance are framed in black 
and marked by black half circles. LH = left hemisphere, RH = right hemisphere, BA = Brodmann area, MW = medial wall. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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connections which replicated across both samples, we also found 22 BAs 
that constituted statistically significant connections in both samples. 
Within the left hemisphere, 11 (50.00%) of these were related to the P- 
FIT model (BAs 6, 7, 8, 9, 10, 21, 39, 40, 42, 46, 47) and two (9.09%) 
were not (BAs 4, 22). Within the right hemisphere, four (18.18%) were 
related to the P-FIT model (BAs 9, 32, 40, 46) and five (22.73%) were 
not (BAs 22, 42, 43, 44, 45). 

Subsequent to examining the entire samples, we also conducted 
aforementioned analyses for male and female participants separately. 
Within both male subsamples, we did not observe a single statistically 
significant association between functional connectivity and matrix 
reasoning performance after applying correction for multiple compari
sons. In contrast, we found 33 partial correlation coefficients that 
reached statistical significance in the female subsample of S498 (8.23%, 
r = 0.18–0.29) (Supplementary Fig. 5). As with the entire sample, the 
majority of connections was exclusively constituted by BAs from the P- 
FIT network (20 out of 33, 60.61%). Further, 13 connections included 
one BA from the P-FIT network and one unrelated BA (39.39%), while 
no connection was completely unrelated to the P-FIT network. The 
overall set of significant connections included 11 intrahemispheric 
connections in the left hemisphere (33.33%), seven intrahemispheric 
connections in the right hemisphere (21.21%), and 15 interhemispheric 
connections (45.45%) (Supplementary Fig. 6). Within the female sub
sample of S991, we identified 13 functional connections which exhibited 
statistically significant associations between functional connectivity and 
PMAT24 test scores (3.24%, r = 0.14–0.17) (Supplementary Fig. 7). We 
found seven of these connections to be entirely constituted by P-FIT 
areas (53.85%), three connections to be partly constituted by P-FIT areas 
(23.08%), and three connections to be constituted by BAs that were 
entirely unrelated to the P-FIT network (23.08%). In view of the general 
trajectories of these statically significant connections, we observed six 

intrahemispheric connections in the left hemisphere (46.15%), two 
intrahemispheric connections in the right hemisphere (15.38%), and 
five interhemispheric connections (38.46%) (Supplementary Fig. 8). 
Two of the 33 statistically significant connections in the female sub
sample of S498 were also present among the 13 connections in the fe
male subsample of S991. One of them was an intrahemispheric 
connection already observed for the entire samples, namely that be
tween left hemispheric BAs 8 and 47 (S498: r = 0.18, p < .01; S991: r =
0.15, p < .001). The other was an interhemispheric connection between 
BA 42 in the left and BA 22 in the right hemisphere (S498: r = 0.19, p <
.01; S991: r = 0.14, p < .001). In addition, we also identified 12 BAs that 
constituted statistically significant connections in the female subsamples 
of S498 and S991. All of the six BAs within the left hemisphere (50.00%) 
were related to the P-FIT model (BAs 8, 10, 40, 42, 46, 47). Within the 
right hemisphere, three BAs (25.00%) were related to the P-FIT model 
(BAs 10, 40, 46) and three (25.00%) were not (BAs 22, 44, 45). 

In order to further examine the five statistically significant connec
tions which replicated across both samples, we conducted various 
multiple regression analyses. For the respective regression models, the 
normalized BOLD signal correlations exhibited by aforementioned five 
connections were used as independent variables. In the S498 sample 
(Supplementary Table 1), BOMAT test scores served as the dependent 
variable, whereas PMAT24 test scores were used as the dependent var
iable in the S991 sample (Supplementary Table 2). All following results 
refer to the adjusted R2 of respective regression models. When utilizing 
data from the entire samples, the regression model of sample S498 was 
able to explain 4.60% of variance in matrix reasoning performance and 
that of sample S991 yielded 3.35% of explained variance. Both models 
were found to be highly significant (p < .001). Moreover, the functional 
connection between BA 46 in the left and BA 44 in the right hemisphere 
exhibited the highest unique contribution towards predicting matrix 

Fig. 4. Schematic depiction of functional connections showing statistically significant associations with matrix reasoning performance in sample S498. Brodmann 
areas included in the parcellation scheme used for this study are shown as white spheres within the semi-transparent MNI brain in the center. Functional connections 
exerting statistically significant correlations between their connectivity strength and matrix reasoning performance are shown as white lines. Spheres constituting 
statistically significant connections are slightly bigger than the rest and carry labels with the numbers of their corresponding Brodmann areas. Spheres and lines 
representing functional connections which replicated across both samples (S498 and S991) are depicted in yellow. Brodmann areas which were involved in sta
tistically significant connections in both samples are represented by red spheres. All Brodmann areas constituting statistically significant connections are also shown 
as colored labels on four brain surfaces in the corners (lateral and medial views of the left and right hemispheres). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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reasoning performance in both samples (S498: β = 0.12, p < .05; S991: β 
= 0.16, p < .05). 

Subsequent to the analysis of the entire samples, we computed 
aforementioned models separately for both sexes using only data from 
the male and female subsamples, respectively. The model based on the 
male subsample of S498 explained less variance compared to the overall 
sample's model and did not reach statistical significance (R2

adj = 2.20%, 
p = .066). In contrast, explained variance was highest in the model 
based on the female subsample, which also turned out to be highly 
significant (R2

adj = 7.23%, p < .001). Results showed a similar pattern 
for the S991 sample. Here, both models reached statistical significance, 
but the male subsample's model (R2

adj = 1.96%, p < .05) explained less 
variance in matrix reasoning performance compared to the overall 
sample's model and the female subsample's model (R2

adj = 3.94%, p <
.001). 

In a last step, we computed all of the aforementioned regression 
models with randomly picked subsamples including only 75% of par
ticipants. For each of the entire samples as well as their male and female 
subsample's, we computed 10,000 iterations of the respective model and 
averaged relevant test statistics. In so doing, we found that mean 
explained variance was highest in regression models based on female 
subsamples (S498: R2

adj_mean = 7.21%; S991: R2
adj_mean = 3.99%), fol

lowed by models based on entire samples (S498: R2
adj_mean = 4.59%; 

S991: R2
adj_mean = 3.36%), followed by models based on male sub

samples (S498: R2
adj_mean = 2.24%; S991: R2

adj_mean = 1.96%). Addi
tional test statistics, such as the range of explained variance or the ratio 
of statistically significant iterations, are summarized in Supplementary 
Table 3. 

4. Discussion 

The primary goal of this study was to investigate the relationship 
between matrix reasoning performance and functional connectivity, 
especially with regard to BAs included in the P-FIT network. Our first 
hypothesis suggested that higher functional coherence at rest, quantified 
as normalized BOLD signal correlations between BAs, would lead to 
higher performance on matrix reasoning tests. The parcellation scheme 
that was utilized for this study delineates a total of 82 BAs for the whole 
brain with less than half of them, namely 31 BAs, constituting the P-FIT 
network. Given this ratio and assuming a completely random distribu
tion of statistically significant connections, one would expect 14.00% of 
these connections to be exclusively constituted by P-FIT BAs, 38.39% of 
connections to be completely unrelated to the P-FIT network, and 
47.61% of connections to involve one P-FIT BA and one unrelated re
gion. However, our data revealed a deviating pattern with a strong 
emphasis on the involvement of P-FIT BAs. For sample S498, we iden
tified 31 connections that reached statistical significance after correct
ing for multiple comparisons. Respective connections were exclusively 
constituted by BAs from the P-FIT network in 20 out of 31 cases 
(64.52%), almost five times the expected ratio. Consequentially, statis
tically significant connections that were partially constituted by P-FIT 
BAs (9 out of 31 cases, 29.03%) or did not have any relations to the P-FIT 
network (2 out of 31 cases, 6.45%) fell short of their expected ratios. 
Comparable results were revealed by analyzing data from sample S991. 
In total, we identified 43 statistically significant connections, of which 
the majority, namely 17 connections or 39.53%, turned out to be 
constituted by P-FIT BAs exclusively. As with sample S498, connections 
that were partially constituted by P-FIT BAs (15 out of 43 cases, 34.88%) 
or completely unrelated to the P-FIT network (11 out of 43 cases, 
25.58%) did not reach their expected ratios. Based on these findings 

Fig. 5. Schematic depiction of functional connections showing statistically significant associations with matrix reasoning performance in sample S991. Brodmann 
areas included in the parcellation scheme used for this study are shown as white spheres within the semi-transparent MNI brain in the center. Functional connections 
exerting statistically significant correlations between their connectivity strength and matrix reasoning performance are shown as white lines. Spheres constituting 
statistically significant connections are slightly bigger than the rest and carry labels with the numbers of their corresponding Brodmann areas. Spheres and lines 
representing functional connections which replicated across both samples (S498 and S991) are depicted in yellow. Brodmann areas which were involved in sta
tistically significant connections in both samples are represented by red spheres. All Brodmann areas constituting statistically significant connections are also shown 
as colored labels on four brain surfaces in the corners (lateral and medial views of the left and right hemispheres). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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from two large and independent datasets, it is fair to say that our first 
hypothesis could be confirmed. In both samples, statistically significant 
associations between functional connectivity and matrix reasoning 
performance were predominantly exhibited by connections between 
BAs from the P-FIT network, while connections unrelated to the model 
were of less importance. 

Interestingly, our separate analyses of male and female subsamples 
revealed patterns similar to the entire S498 and S991 samples but only 
in the female subsamples. While we did not observe a single statistically 
significant result within both male subsamples, the female subsample of 
S498 showed 20 connections (60.61%) that were exclusively and 13 
connections (39.39%) that were partially constituted by P-FIT BAs. 
Moreover, none of the connections was completely unrelated to the P- 
FIT network. For the female subsample of S991, we found seven con
nections (53.85%) that were exclusively and three connections 
(23.08%) that were partially constituted by P-FIT BAs as well as three 
connections (23.08%) completely unrelated to the P-FIT network. We 
did not expect the aforementioned shift towards a more pronounced 
involvement of P-FIT connections to be sex-specific. However, this 
observation is well in line with previous reports on divergent neural 
correlates of matrix reasoning performance in male and female in
dividuals. More specifically, Genc et al. (2019) found cortex volume to 
be the best predictor of BOMAT test scores in male individuals, whereas 
a graph theoretical measure of functional resting-state connectivity 
turned out to be the best predictor in female individuals. On the popu
lation level, men and women do not show substantial differences with 
regard to their intelligence. However, they can vary considerably in 
particular aspects of their brain anatomy. For example, it is well-known 
that brain volume, which has consistently been reported to be positively 
associated with intelligence (Pietschnig et al., 2015), is 10% larger in 
men compared to women (Ruigrok et al., 2014). Therefore, it is 
conceivable that female individuals draw on different aspects of their 
neural substrate, e.g. functional connectivity, in order to achieve com
parable levels of cognitive performance. 

In view of the replicability of our results, it is important to note that 
there were five statistically significant connections which were present 
in the S498 as well as the S991 sample. Two of these connections were 
entirely constituted by P-FIT areas (BAs 8, 10, 39, and 47 in the left 
hemisphere) and the remaining three were comprised of a combination 
between P-FIT areas (BAs 10 and 46 in the left hemisphere) and areas 
unrelated to the P-FIT network (BA 22 in the left and BAs 44 and 45 in 
the right hemisphere). In the following, we would like to elaborate on 
these particular BAs and the cognitive functions usually associated with 
them. BA 8 is located anterior to the premotor cortex an includes the 
frontal eye fields, which have been related to visual attention and eye 
movements (Schall, 2004). Despite being situated in the frontal cortex, 
which is mainly associated with high-level information processing, BA 8 
has also been shown to be a quickly activated multimodal region that 
belongs to a network of low-level neocortical sensory areas (Kirchner, 
Barbeau, Thorpe, Régis, & Liégeois-Chauvel, 2009). Given its involve
ment in visual information processing, functional connections 
emanating from BA 8 might be of importance when working on visually 
presented problems such as matrix reasoning items. In addition to that, 
there is evidence that functional activation of BA 8 is tied to the expe
rience of uncertainty (Volz, Schubotz, & von Cramon, 2005), which is 
likely to occur during a matrix reasoning test, especially when working 
on particularly difficult items. BA 10 is the anterior-most portion of the 
prefrontal cortex. In the original meta-analysis by Jung and Haier 
(2007), this area takes a special place in that it approaches a compara
tively high level of convergence across studies in which structural 
properties were related to intelligence. Our results show that matrix 
reasoning performance is associated with functional connectivity be
tween BAs 10 and 39 but also between BAs 10 and 22. In case of the 
latter pathway, there is histological evidence from a study by Petrides 
and Pandya (2007), in which it was shown that the rostral prefrontal 
cortex of macaque monkeys exhibits fiber connections to the superior 

temporal gyrus. With regard to the function of BA 10, it has been stated 
that “hemodynamic changes in area 10 can occur during virtually any 
kind of cognitive paradigm, from the simplest conditioning paradigms to 
the most complex tests” (Burgess, Dumontheil, & Gilbert, 2007). Hence, 
BA 10 is considered to be primarily involved in domain-general func
tions such as working memory (Gilbert et al., 2006) or cognitive 
branching (Koechlin & Hyafil, 2007). Moreover, it has also been hy
pothesized that BA 10 supports the integration of diverse information by 
attending to both environmental stimuli and self-generated mental 
representations, i.e. thoughts (Burgess et al., 2007). BA 39 encompasses 
the angular gyrus and has been proposed to form an extended Wernicke's 
area together with BAs 20, 37, and 38 (Ardila, Bernal, & Rosselli, 2016). 
As part of this language association network, BA 39 is not involved in 
core processes of language perception but believed to serve additional 
functions such as associating words with other information. In line with 
this, BA 39 is known to be significantly abnormal in dyslexic dysfunction 
(Rae et al., 1998; Rumsey et al., 1992). Just like BA 10, BA 39 is also 
among the few brain areas in Jung and Haier (2007), which reach a high 
level of convergence across studies on structural correlates of intelli
gence. BAs 46 and 47 are both situated on the lateral frontal cortex. 
Similar to BAs 10 and 39, BA 46 also approached a high level of 
convergence across studies from Jung and Haier (2007), but in this case 
with regard to intelligence correlates identified by means of positron 
emission tomography. Complementary to BA 39 supporting the 
perception of language, BAs 46 and 47 are hypothesized to be part of a 
complex frontal-subcortical circuit involved in language production and 
grammar known as Broca's complex (Ardila et al., 2016). Further, BAs 
44 and 45 are supposed to constitute the core of this complex. Impor
tantly, given that language production is usually lateralized to the left 
hemisphere, especially in right-handed individuals (Ocklenburg, Beste, 
Arning, Peterburs, & Guentuerkuen, 2014), it is somewhat surprising 
that our analyses yielded significant results for left-hemispheric BAs 46 
and 47 but right-hemispheric BAs 44 and 45. As mentioned above, we 
found BAs 10 and 22 to exhibit a statistically significant connection. BA 
22 is located in the posterior segment of superior temporal gyrus. In the 
left hemisphere, it constitutes a core Wernicke's area together with BAs 
21, 41, and 42 (Ardila et al., 2016). Taken together, these results indi
cate that the association between matrix reasoning performance and 
functional connectivity is strongly affected by areas involved in lan
guage processing (BAs 22, 39, 44, 45, 46, 47). Language has been 
considered to be an important cognitive tool for reasoning (Varley, 
2007). On the one hand, it provides a set of symbols that permits the 
encapsulation and manipulation of abstract notions. On the other hand, 
its grammatical mechanisms allow for relationships between entities to 
be captured. Furthermore, language is crucial for inner speech, which 
can guide the reasoning process, e.g. by breaking down a complex 
problem into a series of sub-steps. Based on these assumptions, the 
functional connectivity patterns observed in our results might represent 
the following mechanisms potentially underlying matrix reasoning. The 
frontal eye fields encompassed by BA 8 are likely to support the 
extraction of sensory information from a matrix reasoning problem by 
initiating saccadic eye movements and engaging in early visual pro
cessing. Respective information might constantly be forwarded to 
language-related areas (BAs 22, 39, 44, 45, 46, 47), in which a verbal
ized mental representation of the problem is formed and used to come 
up with an adequate solution. Moreover, it is conceivable that this 
process of integrating external visual information and internal mental 
representations is primarily guided by BA 10. By subjecting the func
tional connections comprised in this model to multiple regression 
analysis, we found them to explain about 4% to 6% of variance in matrix 
reasoning performance, depending on the sample we used. In neuro
scientific intelligence research, explained variance typically falls into 
this order of magnitude, given that the association between intelligence 
and its neural correlates is characterized by supervenience (many-to- 
one) rather than isomorphism (one-to-one) (Kievit et al., 2011; Ritchie 
et al., 2015). Furthermore, multiple regression analysis revealed that the 
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predictive power of our model was higher and more stable for female 
compared to male individuals. As mentioned above, this finding is well 
in line with previous research showing a more pronounced relationship 
between intelligence and functional correlates for female brains and a 
stronger influence of structural correlates for male brains (Genc et al., 
2019). 

For the P-FIT model a serial flow of information is assumed with 
cognitive processing proceeding from the occipital and temporal lobes to 
parietal, frontal, and cingulate regions in consecutive order. Thus, we 
hypothesized that functional connections, exhibiting statistically sig
nificant associations between their connection strength and matrix 
reasoning performance, should mainly comply to this pattern. Among 
the five functional connections which replicated across both samples, we 
observed one temporal-frontal connection (BA 22 to BA 10), one 
parietal-frontal connection (BA 39 to BA 10), and one frontal-frontal 
connection (BAs 8 to BA 47), all of them in the left hemisphere, as 
well as two interhemispheric frontal-frontal connections (BA 46 to BA 
44 and BA 46 to BA 47). Since the original P-FIT model does not make 
any assumptions with regard to intra- or interhemispherically organized 
connections within the same lobe, we do not consider respective con
nections to be a violation of the serial flow model. Further, the parietal- 
frontal connection between BAs 39 and 10 in the left hemisphere 
matches the model proposed by P-FIT. In contrast, the temporal-frontal 
connection between BAs 22 and 10 in the left hemisphere is not in line 
with the serial flow model in that it bypasses information exchange with 
parietal areas. Importantly, given that matrix reasoning usually revolves 
around visually presented information, the involvement of BA 22 is 
unlikely to stem from the early processing of external auditory stimuli. 
As mentioned above, we consider it to be more feasible that BA 22 is part 
of a language-related network, which enables an individual to use inner 
speech for the purpose of problem solving. In general, our results favor a 
more parallel flow of information with BA 10 utilizing visual informa
tion provided by BA 8 to constantly update a verbalized mental repre
sentation used by language-related areas (BAs 22, 39, 44, 45, 46, 47). In 
return, inner speech emerging from the language-related areas might 
guide the extraction of additional visual information by sending feed
back to BA 8. It has to be noted that this model is based on fMRI data that 
were recorded with participants at rest instead of actively solving matrix 
reasoning problems. Hence, it is possible that task-based data might 
yield slightly different associations between matrix reasoning perfor
mance and functional connectivity patterns. In addition to that, the 
functional connections yielded by our analyses are based on BOLD signal 
correlations between whole cortical areas. Therefore, they lack infor
mation about directionality, which makes it hard to interpret respective 
data with regard to flow of information. A possible solution to this 
problem is to employ fMRI data recorded at a higher magnetic field 
strength, e.g. 7 Tesla. In so doing, one can assess images with a 
considerably higher spatial resolution and obtain information about 
hemodynamic changes at the level of individual cortical layers. Ac
cording to the canonical model of cortical layer connectivity, feedfor
ward activity is found in middle layers, whereas feedback activity is 
located in superficial and/or deep layers, depending on the brain region 
under investigation (Finn, Huber, Jangraw, Molfese, & Bandettini, 2019; 
Markov et al., 2013; Sharoh et al., 2019). An even more sophisticated 
approach towards the disentanglement of feedforward and feedback 
information flow involves the analysis of simultaneously recorded data 
from fMRI and electroencephalography (Scheeringa, Koopmans, van 
Mourik, Jensen, & Norris, 2016). In combination, these measures would 
permit direct testing of the serial flow of information model as proposed 
by Jung and Haier (2007). 

Our third hypothesis suggested that the association between func
tional connectivity and matrix reasoning performance is represented by 
both positive and negative correlation coefficients. Although we initially 
observed both negative and positive associations, our third hypothesis 
had to be rejected since none of the negative correlations survived 
correction for multiple comparisons. All of the statistically significant 

associations that remained, 31 in the S498 sample and 43 in the S991 
sample, were positive. This absence of negative correlations is not in line 
with previous studies, in which inverse relations between measures of 
functional connectivity and intelligence have been reported. For 
example, Song et al. (2008) observed negative correlations between 
intelligence and functional connectivity exhibited by connections link
ing the left dorsolateral prefrontal cortex to BA 10 of both hemispheres. 
However, when the authors subjected all statistically significant func
tional connections to a stepwise linear analysis, none of the inverse as
sociations were retained in the resulting model. Another study by Hilger 
et al. (2017b), investigated the relationship between brain's modular 
organization and intelligence. In view of between-module connectivity, 
the authors observed negative associations for node clusters in medial 
superior frontal gyrus, left inferior parietal lobule, and bilateral 
temporo-parietal junction. Furthermore, they found intelligence and 
within-module connectivity to be negatively associated for node clusters 
in right anterior insula, bilateral precentral gyrus, bilateral hippocampi, 
and subcortically in the left caudate nucleus. According to the authors, 
nodes exhibiting negative associations between intelligence and 
between-module connectivity might possess a vital role in shielding 
ongoing cognitive processes from interfering noise. Similarly, nodes 
showing negative associations between intelligence and within-module 
connectivity might benefit from a more independent and shielded po
sition within their own functional module. Generally speaking, negative 
correlations between measures of cognitive performance and functional 
connectivity are likely to be found in brain areas characterized by 
segregated information processing, i.e. increasing signal-to-noise ratio 
by avoiding unnecessary crosstalk and the exchange of irrelevant in
formation (Cohen & D'Esposito, 2016). As opposed to aforementioned 
research, our analyses did not yield any results in support of such 
mechanisms. These inconsistencies between studies might be attributed 
to differences in the analytical approach (whole-brain vs. seed-based, 
individual BOLD signal correlations vs. graph metrics), choice of 
behavioral variables (matrix reasoning performance vs. general intelli
gence), or size and composition of samples. Notwithstanding the above, 
it might be interesting to see if the use of task-based fMRI data, capturing 
the brain while engaging in information processing, would yield sub
stantially different results compared to fMRI resting-state data. 

Within both samples, the vast majority of functional connections, 
including those theoretically nominated by the P-FIT model, did not 
exhibit statistically significant associations between their connectivity 
strength and matrix reasoning performance. To recapitulate, our ana
lyses started out with functional connectivity matrices holding infor
mation about 3321 individual connections in the form of normalized 
BOLD signal correlations. In order to remove spurious connections, we 
computed pruned versions of these matrices containing merely 401 
functional connections. Among these, 121 were constituted entirely by 
areas from the P-FIT network, 160 were partially built by P-FIT areas, 
and 120 were completely unrelated to P-FIT. Out of the 281 functional 
connections involving at least one P-FIT area, only 29 connections 
(10.32%) from sample S498 exhibited statistically significant associa
tions between their connectivity strength and matrix reasoning perfor
mance. For sample S991, we observed 32 (11.39%) such connections. In 
order to arrive at an exact number of functional connections theoreti
cally nominated by the P-FIT model, one would have to consider only 
those connections conforming to the serial flow of information model. 
However, even when taking these restrictions into account the ratio 
between observed and potential P-FIT connections would remain fairly 
low. Hence, the question arises if the original version of the P-FIT 
network should be pruned based on our data. In this regard, it has to be 
noted that the research question tackled in the meta-analysis conducted 
by Jung and Haier (2007) is slightly different from that of our work. 
While the P-FIT model nominates brain areas whose properties, such as 
task-based functional activation, have been consistently associated with 
intelligence, our study is focused on functional brain connections and 
how their strength is related to matrix reasoning performance. In our 
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opinion, it is quite possible that a particular brain area is strongly 
involved in mental problem solving even though it does not show 
intelligence-related functional connectivity, neither during a task nor at 
rest. 

When comparing the results obtained from both datasets utilized for 
this study, it has to be noted that the statistically significant connections 
identified for sample S498 do not match exactly those in sample S991. In 
total, we identified 31 statistically significant connections in the S498 
sample and 43 connections in the S991 sample. However, only five of 
these connections, about 12–16%, replicated across both samples. 
Although the replication of results across multiple datasets is considered 
desirable, it has to be understood that such efforts are to some extent 
limited by the substantial differences between datasets. The two samples 
used for the study at hand differed with regard to their matrix reasoning 
tests, sample sizes, image acquisition protocols, and preprocessing 
pipelines. For example, the “advanced short version” of BOMAT, which 
was used for our data acquisition, has more items compared to PMAT24 
(29 instead of 24) and was designed high discriminatory power in mind, 
especially in samples with generally high intellectual abilities, thus 
avoiding possible ceiling effects. Moreover, our behavioral data acqui
sition was solely focused on matrix reasoning performance, whereas the 
Human Connectome Project conducted the PMAT24 along with a large 
variety of other tests unrelated to matrix reasoning performance or other 
forms of intelligence. Hence, it is possible that BOMAT test scores pro
vide a slightly more precise estimate of matrix reasoning performance 
compared to PMAT24 test scores. However, it has to be noted that the 
S991 sample comprised about two times as many subjects as the S498 
sample. Therefore, it is also conceivable that potential noise within the 
behavioral data was mitigated more strongly in the S991 sample due to 
its larger size. Further differences between both samples can be identi
fied in the acquisition of fMRI data. Whereas participants from the S498 
were told to keep their eyes closed during resting-state scans, partici
pants from the S991 sample were instructed to keep their eyes open. 
Effects caused by such differences in instruction have been found to be 
relatively small but significant (Patriat et al., 2013). In our data, func
tional connections involving areas from the primary visual cortex did 
not show any significant associations with matrix reasoning perfor
mance in both samples. Likewise, both samples exhibited statistically 
significant functional connections emanating from BA 8, which is 
involved in visual processing since it contains the frontal eye fields. 
Hence, albeit different methods were used to acquire resting-state data, 
instructing participants to keep their eyes closed or open did not cause 
substantially different results between both samples. In addition to said 
differences in instruction, the acquisition time of resting-state data was 
7 min in the S498 sample and 30 min in the S991 sample. Birn et al. 
(2013) came to the conclusion that the intersession reliability of func
tional connectivity data is significantly increased by acquisition time, 
but only if all functional connections within a network of interest are 
considered. In pruned networks, from which all spurious connections 
that failed to reach statistical significance are removed, the beneficial 
effects of longer acquisition times begin to plateau at around 9 min. In 
following a pruning approach for the analysis of our fMRI data, we 
aimed to diminish the differences in reliability between both samples as 
much as possible. Considering these and other marked differences be
tween both samples, it is obvious why we did not find results from 
sample S498 to perfectly match those yielded by sample S991. However, 
this also renders the findings replicating across both samples to be even 
robust. 

In conclusion, by analyzing data from two independent datasets 
comprising a total of 1489 healthy individuals, we were able to identify 
several functional connections, all of them related to the P-FIT network, 
whose connectivity strength at rest was significantly associated with 
matrix reasoning performance. In previous research, the brain areas 
constituting respective connections have been shown to be primarily 
involved in language processing. Hence, it is conceivable that our results 
reflect the importance of inner speech for solving matrix reasoning tasks 

or even other intelligence-related problems. It might be interesting for 
future research to take up the approach of our study, namely to examine 
intelligence-related correlates on the level of individual brain network 
connections, and extend it in various ways. For example, one might 
employ other measures of intellectual performance, such as general in
telligence, or utilize task-based fMRI data recorded while subjects are 
actively working on cognitively demanding problems. In view of func
tional network construction, it might be beneficial to delineate brain 
images into individual nodes based on functional properties instead of 
anatomical locations or topographic conformations, e.g. by means of 
hyperalignment (Feilong, Nastase, Guntupalli, & Haxby, 2018). 
Furthermore, structural metrics obtained via diffusion-weighted imag
ing might be used as another way of quantifying network connectivity. 
Lastly, one might conduct simultaneous recordings of fMRI and EGG 
data at ultra-high magnetic field strength in order to reveal the flow of 
information along functional connections relevant for interindividual 
differences in intellectual performance. 
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