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Few tract-based spatial statistics (TBSS) studies have investigated the relations between intelligence and white matter microstructure
in healthy (young) adults, and those have yielded mixed observations, yet white matter is fundamental for efficient and accurate
information transfer throughout the human brain. We used a multicenter approach to identify white matter regions that show
replicable structure–function associations, employing data from 4 independent samples comprising over 2000 healthy participants.
TBSS indicated 188 voxels exhibited significant positive associations between g factor scores and fractional anisotropy (FA) in all 4
data sets. Replicable voxels formed 3 clusters, located around the left-hemispheric forceps minor, superior longitudinal fasciculus, and
cingulum–cingulate gyrus with extensions into their surrounding areas (anterior thalamic radiation, inferior fronto-occipital fasciculus).
Our results suggested that individual differences in general intelligence are robustly associated with white matter FA in specific fiber
bundles distributed across the brain, consistent with the Parieto-Frontal Integration Theory of intelligence. Three possible reasons
higher FA values might create links with higher g are faster information processing due to greater myelination, more direct information
processing due to parallel, homogenous fiber orientation distributions, or more parallel information processing due to greater axon
density.
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Introduction
People differ in general intelligence, i.e. “[ . . . ] their ability to under-
stand complex ideas, to adapt effectively to the environment, to
learn from experience, to engage in various forms of reasoning,
to overcome obstacles by taking thought” (Neisser et al. 1996,
p. 77). As discovered by Spearman (1904), individuals who do well
in one cognitive task tend to perform above average in other
cognitive tasks as well. The phenomenon of positively correlated
cognitive test scores, which he termed the “positive manifold,” led
Spearman to declare the existence of “g,” the general factor of
intelligence. Though g is actually just a statistical observation,
it is an important one because it is relevant to many aspects
of everyday life. For example, intelligence is positively correlated
with school performance (Neisser et al. 1996; Roth et al. 2015),
job performance (Gottfredson 1997; Schmidt and Hunter 2004),
socioeconomic success (Strenze 2007), income (Zagorsky 2007),
and even physical health, longevity, and ephemerals such as
stability of marital relationships (Whalley and Deary 2001; Hem-
mingsson et al. 2006; Batty et al. 2007; Deary et al. 2010b; Calvin
et al. 2011; Calvin et al. 2017; Aspara et al. 2018). Due to the
impacts that intelligence or g seems to have on life outcomes, it
has always been of interest to identify specific structures within
the human brain that are associated with its interindividual
differences.

While it is one well-replicated observation that bigger brains
are weakly to moderately associated with higher intelligence
(McDaniel 2005; Pietschnig et al. 2015; Cox et al. 2019), the advent
of in vivo neuroimaging techniques has allowed scientists to
move from overall brain size to various properties of single brain
regions and beyond. Jung and Haier (2007) reviewed 37 neu-
roimaging studies that aimed to identify intelligence-related brain
regions using various intelligence measures and imaging tech-
niques. Based on the commonalities across findings, they pro-
posed the Parieto-Frontal Integration Theory (P-FIT) of intelli-
gence. P-FIT nominates a set of distributed brain regions, mainly
located in parietal and frontal areas, whose functional and struc-
tural properties are related to interindividual intelligence differ-
ences. Each P-FIT area is believed to be involved in the multi-
ple information processing stages used in solving abstract rea-
soning tasks. Hence, more efficient and flawless information
transfer between these regions seems fundamental to intellec-
tual achievements, which in turn indicates roles of brain white
matter (Jung and Haier 2007). The brain’s white matter mainly
consists of myelinated axons that are organized in fiber tracts
running from one brain region to another (Filley 2012), which
enables thereby the information transfer. The hypothesis that the
integrity of certain white matter fiber tracts is crucial for intel-
ligence (Jung and Haier 2007) has been empirically supported by
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Gläscher et al. (2010) who used voxel-based lesion-symptom map-
ping in a large sample of patients with focal brain damage. Their
observations indicated that severe damage to fiber tracts linking
P-FIT areas (superior longitudinal fasciculus, arcuate fasciculus,
uncinate fasciculus, and inferior fronto-occipital fasciculus) was
significantly associated with lower intelligence (Gläscher et al.
2010). Subsequent studies using lesion-symptom mapping were
consistent with these observations (Barbey et al. 2012; Barbey
et al. 2014; Bowren et al. 2020). Even newer theories based on graph
theory, such as Barbey’s (2018) Network Neuroscience Theory,
which proposes that general intelligence reflects individual dif-
ferences in whole brain topology’s efficiency and in the capacity
to dynamically reconfigure brain network states, emphasize the
importance of the brain’s structural (and functional) organization
since it may facilitate or constrain network flexibility. The idea
that intelligence relies on a dynamic system comprising inter-
acting subcomponents distributed all over the brain does not
contradict previous research reporting that some brain regions or
white matter fiber tracts seem to be more commonly implicated
in successfully accomplishing cognitive tasks than others (Jung
and Haier 2007; Cox et al. 2019). It only shifts the focus so
that previously reported, focal differences in brain structure are
no longer seen as isolated causes of differences in intelligence,
but as traces of employed functional dynamics and architecture
enabling easier transition between functional network states.

The advent of diffusion-weighted imaging (DWI) led to an
exponential growth of white matter brain imaging studies (Deary
et al. 2022). DWI is based on diffusion of water molecules (Le Bihan
and Breton 1985; Le Bihan et al. 1986; Le Bihan 2014) and indicates
anisotropic, directional diffusion patterns within voxels contain-
ing coherently oriented white matter fibers and isotropic, non-
directional patterns within voxels containing randomly oriented
fibers or fluid-filled spaces such as ventricles (Le Bihan 2003).
The most widely used metric to quantify water diffusion’s degrees
of directionality in a summative manner is fractional anisotropy
(FA). Here, higher FA values indicate more parallel diffusion tra-
jectories (Basser and Pierpaoli 1996; Assaf and Pasternak 2008).
Although FA is clearly related to white matter microstructure,
it may be misleading to use it as a marker of microstructural
integrity (Jones et al. 2013). FA is a complex and unspecific mea-
sure affected by various physiological factors like axon diameter,
fiber density, myelin concentration, or distribution of fiber orien-
tation (Beaulieu 2002; Le Bihan 2003; Jones et al. 2013; Friedrich
et al. 2020). These factors make it challenging to disentangle and
interpret the actual sources of signal differences (Jones et al.
2013). Nevertheless, FA is a widely used metric and its association
with intelligence has been investigated extensively. Studies have
analyzed white matter properties by averaging across specific
regions of interest (Deary et al. 2006; Tang et al. 2010; Power et al.
2019), extracting them from whole fiber tracts (Yu et al. 2008;
Kontis et al. 2009; Penke et al. 2010; Clayden et al. 2012; Penke
et al. 2012; Booth et al. 2013; Ferrer et al. 2013; Kievit et al. 2014;
Ohtani et al. 2014; Muetzel et al. 2015; Nestor et al. 2015; Urger
et al. 2015; Cremers et al. 2016; Kievit et al. 2016; Kievit et al. 2018;
Bathelt et al. 2019; Cox et al. 2019; Dubner et al. 2019; Fuhrmann
et al. 2020; Góngora et al. 2020; Holleran et al. 2020; Simpson-Kent
et al. 2020; Suprano et al. 2020; Kennedy et al. 2021), or by
a whole-brain voxel-based approach (Schmithorst et al. 2005;
Chiang et al. 2009; Schmithorst 2009; Allin et al. 2011; Navas–
Sanchez et al. 2014). As summarized by Genç and Fraenz et al.
(2021), the majority of such studies reported positive relations
between intelligence and average FA values from many major
white matter pathways, mostly representing connections between

P-FIT areas. Independent of the specific methods used, similar
patterns emerged among different studies. The 4 fiber tracts most
commonly associated with intelligence differences are the genu
and the splenium of the corpus callosum, the uncinate fasciculus,
and the superior longitudinal fasciculus (Genç and Fraenz 2021).

Studies investigating pre-selected brain regions or white mat-
ter tracts are prone to miss relevant relations in non-selected
areas. Analyses adapting voxel-based methods, such as voxel-
based morphometry (Ashburner and Friston 2000), to analyze FA
images also have various shortcomings such as alignment inac-
curacies (Smith et al. 2006). Tract-based spatial statistics (TBSS)
has been introduced as an approach that combines the strengths
of tractography-based and voxel-based analyses to overcome the
aforementioned limitations (Smith et al. 2006). Although TBSS has
advantages, few studies have investigated the relation between
FA and intelligence in healthy (young) adults using this method.
Dunst et al. (2014) found no significant associations between
general intelligence and FA in any white matter voxel, whereas
Malpas et al. (2016) reported significant positive relations in 32%
of voxels constituting the white matter skeleton (right anterior
thalamic radiation, left superior longitudinal fasciculus, left infe-
rior fronto-occipital fasciculus, and left uncinate fasciculus). In
line with Dunst et al. (2014), Hidese et al. (2020) found no signifi-
cant associations between general intelligence and regional white
matter FA, despite analyzing a larger sample. Tamnes et al. (2010)
employed a sample comprised of 168 participants, aged between
8 and 30 years. They focused their TBSS analyses on verbal and
nonverbal reasoning abilities. While 4.6% of voxels in the white
matter skeleton showed significant positive associations between
FA and verbal abilities (left anterior thalamic radiation, left cingu-
lum–cingulate gyrus, left and right superior longitudinal fascicu-
lus), 1.6% of skeleton voxels (left superior longitudinal fasciculus,
forceps major) showed significant positive associations between
FA and nonverbal reasoning abilities (Tamnes et al. 2010).

Previous TBSS studies have often had samples small enough
that effect size estimates are likely to be highly variable and
inaccurate. Furthermore, inconsistencies such as different sam-
ple sizes or intelligence measures limited their comparability. In
short, they do not allow clear conclusions to be drawn about
associations between general intelligence and FA. Some found
significant positive relations, whereas others did not. As proposed
by Genç and Fraenz et al. (2021), such inconsistent observations
may be tackled by following a multicenter approach. To this
end, multiple, independent data sets, typically collected by differ-
ent research groups, are analyzed in the same way. Importantly,
only those results that replicate across the majority (or all) of
samples are considered robust. We followed this approach as
methodologically consistently as possible, searching for repli-
cable observations among 4 independent data sets comprising
cross-sectional data from more than 2000 healthy participants.
Our group performed whole-brain TBSS analyses to examine
the associations between general intelligence, in the form of g
factor scores, and FA separately on each sample. Besides the
aforementioned advantage of multicenter studies, another reason
for choosing this rather conservative approach was that a first-
level combination (pooling all) of our 4 data sets with not-identical
behavioral measures was not possible since sample mean g levels
might differ and because imaging data were obtained on different
scanners. However, as g and FA values were available for all
samples and relative values between subjects within samples
should be comparable, we were able to combine the data sets
at a second level with our multicenter approach. Data were col-
lected at Ruhr-University Bochum (RUB) in Germany with n = 557
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Table 1. Sample characteristics.

Data set Male/Female Age range Age Handedness

RUB 283/274 18–75 27.3 ± 9.4 73.1 ± 50.7
HCP 490/571 22–37 28.7 ± 3.7 65.9 ± 44.6
UMN 129/122 20–40 26.2 ± 4.9 100.0 ± 0.0
NKI 137/259 6–85 44.4 ± 22.9 65.4 ± 47.1

Age and handedness are depicted as mean ± SD.

(Genç et al. 2021), the Human Connectome Project (HCP) with
n = 1061 (van Essen et al. 2013), the University of Minnesota (UMN)
with n = 251 (Grazioplene et al. 2015, 2016), and the Nathan Kline
Institute (NKI) with n = 396 (Nooner et al. 2012). We compared
observations to identify white matter areas that exhibited repli-
cable structure–function associations among data sets. As the
overlap among multiple data sets’ results will be likely to include
fewer areas than a single data set’s results, our study might
yield relatively circumscribed but robust associations between
white matter and g. This could give the impression that only
focal differences in FA are associated with differences in general
intelligence. However, if some white matter fiber tracts seem more
commonly implicated in successfully accomplishing cognitive
tasks this will not mean other brain white matter areas are
irrelevant. Involvement of white matter throughout the brain for
information transfer seems relevant for intellectual performance
as intelligence is more likely to emerge from a dynamic system
comprising interacting subcomponents (Barbey 2018).

Materials and methods
Participants
Data set RUB
The RUB sample encompassed 557 participants (Table 1), mainly
university students of different majors, who were either paid for
their participation or received course credits. Although the age
range was between 18 and 75 years, the data set was predom-
inantly comprised of individuals from young adulthood. Indi-
viduals were not admitted to the study if they had insufficient
German language skills or reported having undergone any of the
employed intelligence tests within the last 5 years. They were
also excluded if they or any of their close relatives suffered from
neurological and/or mental illnesses, as assessed by a self-report
questionnaire. The study protocol was approved by the Local
Ethics Committee of the Faculty of Psychology at Ruhr University
Bochum (vote Nr. 165). All participants gave written informed
consent and were treated according to the Declaration of Helsinki.

Data set HCP
The HCP sample data were provided by the HCP, WU-Minn Con-
sortium (Principal Investigators: David Van Essen and Kamil Ugur-
bil; 1U54MH091657), funded by the 16 US National Institutes of
Health (NIH) Institutes, Centers supporting the NIH Blueprint
for Neuroscience Research, and by the McDonnell Center for
Systems Neuroscience at Washington University. We employed
the “1200 Subjects Data Release” (van Essen et al. 2013). It includes
behavioral and imaging data from 1206 young adults. To compute
a g factor, all participants with missing values in one or more of
the intelligence measurements listed below had to be excluded,
which reduced the sample to n = 1188 (mean age: 28.8 years,
standard deviation [SD] = 3.7 years, 641 females). Since DWI data
were not available for all participants, the final sample for the
TBSS analysis was limited to 1061 participants (Table 1). To be

included in the data set, participants had to have no significant
history of psychiatric disorder, substance abuse, neurological, or
cardiological disease and give valid informed consent (van Essen
et al. 2012).

Data set UMN
The UMN data set encompassed 335 participants (mean age:
26.3 years, SD = 5.0 years, 164 females) with sufficient data from
intelligence testing to compute a general factor g. Since DWI
data were not available for all participants, the final sample
for the TBSS analysis was reduced to 251 participants (Table 1).
Individuals who reported a history of neurologic or severe psychi-
atric disorders, current drug or alcohol problems, or current use
of psychotropic medication (antipsychotics, anticonvulsants, and
stimulants) were not admitted to the study. The study protocol
was approved by the UMN Institutional Review Board and all
participants gave written informed consent.

Data set NKI
Data collection for the NKI sample is still ongoing. It is intended
to investigate the neurologies of psychiatric disorders (Nooner
et al. 2012). The “Enhanced Nathan Kline Institute—Rockland
Sample” data set (Nooner et al. 2012) is part of the 1000 Functional
Connectomes Project (http://fcon_1000.projects.nitrc.org) and we
downloaded it from its official website (http://fcon_1000.projects.
nitrc.org/indi/enhanced/). Since our study is focused on healthy
participants, we included only individuals who did not report
any history of psychiatric illness. Moreover, they also had to
have complete intelligence test data. We used these to calcu-
late the g factor (n = 417, mean age: 43.5 years, SD = 23.5 years,
273 females). For the final sample, usable for TBSS analysis, we
had to exclude additional participants due to lack of DWI data
(n = 396, Table 1). Relative to the other data sets, which mostly
consisted of young adults, the NKI sample had a much greater
age range and higher mean age (Table 1). However, since exclusion
of all participants outside the 20–40 range would have cost 306
participants, we included all participants with suitable data. The
study protocol was approved by the Institutional Review Boards at
the NKI and Montclair State University. Written informed consent
for the study was obtained from all participants or, for children,
additionally from a legal guardian (Nooner et al. 2012).

General intelligence factor, g, computation
Research on the psychometric structure of intelligence has mod-
ified and extended Spearman’s original ideas regarding the exis-
tence of g. In recent hierarchically organized models, g is placed
at the apex of a hierarchy with broad cognitive domains at a
lower level and narrow cognitive abilities at the basis (Schneider
and McGrew 2012; Flanagan and Dixon 2013). There is consid-
erable evidence for the existence of such structures, but their
specifics depend on the tests and sample properties. Nonetheless,
when ranges of tests included are broad, their g factors correlate
for all practical purposes completely, e.g. Johnson et al. (2004);
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Fig. 1. Confirmatory factor analytic model of the RUB data set. G = general factor of intelligence, ver = verbal intelligence as broad cognitive domain,
num = numerical intelligence as broad cognitive domain, fig = figural intelligence as broad cognitive domain, IST_SEN = subtest Sentence Completion
of the I-S-T 2000 R, IST_SIM = subtest Similarities of the I-S-T 2000 R, IST_ANA = subtest Analogies of the I-S-T 2000 R, BOWIT = Bochumer Wissenstest,
IST_KNO = parameter Knowledge of the I-S-T 2000 R, IST_CAL = subtest Calculations of the I-S-T 2000 R, IST_SER = subtest Number Series of the I-S-T
2000 R, IST_SIG = subtest Numerical Signs of the I-S-T 2000 R, ZVT = Zahlenverbindungstest, IST_SEL = subtest Figure Selection of the I-S-T 2000 R,
IST_CUB = subtest Cubes of the I-S-T 2000 R, IST_MAT = subtest Matrices of the I-S-T 2000 R, IST_RET = parameter Retentiveness of the I-S-T 2000 R,
BOMAT = Bochumer Matrizentest.

Johnson et al. (2008). Thus, content of g is relatively unaffected by
the tests from which it was generated, though the level of any one
person’s factor score certainly could be. Measurement invariance
does not hold across g ranges. For example, arithmetic tests tend
to be processing speed tasks for people with high g levels but
reasoning tasks for people with low g levels. Furthermore, a person
with average performance on various intelligence tests may have
a standardized g-value that is below average in a highly intelligent
sample and a g-value that is above average in a less intelligent
sample. Since sample mean g levels might differ and because
imaging data were obtained on different scanners (which also
affects what is observed), it was not possible to combine the 4
data sets employed in our study.

We used the intelligence test scores of each data set (see section
“Description of intelligence tests”) to compute g factor scores for
every participant. To do this, we regressed age, sex, age∗sex, age2,
and age2∗sex from the test scores. We added age2 because we
wanted to be sure there were no quadratic relations with age
(McGue and Bouchard 1984). We then developed a hierarchical
factor model separately for each data set based on the standard-
ized residuals by first using exploratory factor analysis to develop
the optimal factor model (results not shown) and then performing
confirmatory factor analysis. We assessed model fit using the
chi-square (X2) statistic as well as the fit indices Root Mean
Square Error of Approximation (RMSEA), Standardized Root Mean
Square Residual (SRMR), Comparative Fit Index (CFI), and Tucker–
Lewis index (TLI). The chi-square (X2) statistic tests whether
the difference between the model-implied variance–covariance
matrix and the empirically observed variance–covariance matrix
is zero (Hu and Bentler 1999). Nonsignificance therefore indicates
good model fit (Bentler and Bonett 1980), but is essentially never

attained in samples of any size, which is why it is important to
consider other indices of model fit. Values of RMSEA and SRMR
less than 0.05 and values of CFI and TLI greater than 0.97 are
considered good (Hu and Bentler 1999). We used these models
to calculate regression-based g-factor scores for each participant,
winsorizing outliers, which is the most robust way to address the
potential problems that can create (Wilcox 1997). We examined g
factor score distributions separately for each sample and limited
data points far enough above or below where the data begin to
cohere to distort regression lines to those levels. To ensure that
we did not alter overall distribution shape unduly, we examined
both skew and kurtosis.

Confirmatory factor models.
Figures 1–4 show the postulated confirmatory factor models for
the data sets, the z-standardized factor loadings, and the covari-
ances between individual subtests. The chi-square (X2) statistics
and the fit indices to evaluate model fit are listed in Table 2.
The confirmatory factor analyses of all data sets yielded quite
good (RUB and HCP) to excellent (UMN and NKI) fit. That the
chi-square (X2) statistics of the 2 largest data sets RUB and HCP
were significant, does not itself indicate poor model fit because
the chi-square (X2) statistic is a direct function of sample size,
which means that the probability of rejecting any model is greater
with greater sample size (Jöreskog 1969; Bentler and Bonett 1980).
As the RUB data set contained tests intended to tap “general
knowledge” (IST_KNO and BOWIT) that are not commonly part
of cognitive test batteries, we also calculated an alternative g
factor without these 2 tests (factor model not shown). It was
not possible anymore to get a hierarchical factor model with
good model fit. Therefore, the new factor was a nonhierarchical
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Fig. 2. Confirmatory factor analytic model of the HCP data set. G = general factor of intelligence, attn = attention as broad cognitive domain,
proc = processing as broad cognitive domain, spd/acc = speed/accuracy as broad cognitive domain, PicSeq = subtest Picture Sequence Memory Test of
the NIH toolbox, ListSort = subtest List Sorting Working Memory Test of the NIH toolbox, SCPT = subtest Short Penn Continuous Performance Test of the
Penn CNB, PMAT = subtest Penn Matrix Reasoning Task of the Penn CNB, IWRD = subtest Penn Word Memory Test of the Penn CNB, VSPLOT = subtest
Variable Short Penn Line Orientation Test of the Penn CNB, ReadEng = subtest Oral Reading Recognition Test of the NIH toolbox, PicVocab = subtest Picture
Vocabulary Test of the NIH toolbox, CardSort = subtest Dimensional Change Card Sort Test of the NIH toolbox, Flanker = subtest Flanker Inhibitory
Control and Attention Test of the NIH toolbox, ProcSpeed = subtest Pattern Comparison Processing Speed Test of the NIH toolbox.

Fig. 3. Confirmatory factor analytic model of the UMN data set. G = general factor of intelligence, ver = verbal intelligence as broad cognitive domain,
proc = processing as broad cognitive domain, WAIS_SIM = subtest Similarities of the WAIS-IV, WAIS_VC = subtest Vocabulary of the WAIS-IV, WAIS_BD
= subtest Block Design of the WAIS-IV, WAIS_MR = subtest Matrix Reasoning of the WAIS-IV, WAIS_CD = subtest Coding of the WAIS-IV.

single-factor solution. It correlated at r = 0.976 with the one shown
in Fig. 1. Since there was no substantial difference, we decided to
use the hierarchical factor model (Fig. 1) and include all available
intelligence measures.

Description of intelligence tests
Data set RUB
I-S-T 2000 R

The Intelligenz-Struktur-Test 2000 R (I-S-T 2000 R; Liepmann
et al. 2007) is a broadly applicable, well-established German
intelligence test battery that takes about 2.5 hours to complete.
It measures multiple intelligence facets as well as general
intelligence (Table 3). Most included cognitive tasks are presented
in multiple-choice format. Reliability estimates (Cronbach’s α)
are between 0.88 and 0.96 for subtests and composite scores
(Liepmann et al. 2007).

BOMAT-Advanced Short

The Bochumer Matrizentest (BOMAT; Hossiep et al. 2001) is a
nonverbal German intelligence test (Table 3) whose structure is
comparable to the well-established Raven’s Advanced Progressive
Matrices (Raven et al. 1990). For the study at hand, we used the
advanced short version, which is widely used in neuroscientific
research and known to have high discriminatory power in samples
with generally high intellectual abilities, thus avoiding possible
ceiling effects (Hossiep et al. 2001; Jaeggi et al. 2008; Oelhafen
et al. 2013; Genç et al. 2018; Genç et al. 2019; Fraenz et al. 2021).
Split-half reliability of the BOMAT is 0.89 and Cronbach’s α is 0.92
(Hossiep et al. 2001).

BOWIT

The Bochumer Wissenstest (BOWIT; Hossiep and Schulte 2008) is
a German “general knowledge” questionnaire. It is available in 2
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Fig. 4. Confirmatory factor analytic model of the NKI data set. G = general factor of intelligence, ver = verbal intelligence as broad cognitive domain,
proc = processing as broad cognitive domain, WASI_SIM = subtest Similarities of the WASI-II, WASI_VC = subtest Vocabulary of the WASI-II, WASI_BD =
subtest Block Design of the WASI-II, WASI_MR = subtest Matrix Reasoning of the WASI-II.

Table 2. Fit indices of the confirmatory factor analyses.

Model X2 df RMSEA SRMR CFI TLI R2

Data set RUB 127.97∗∗∗ 64 .042 .033 .979 .969 .39
Data set HCP 118.35∗∗∗ 40 .041 .028 .973 .963 .32
Data set UMN 2.51 4 .000 .013 1.000 1.012 .47
Data set NKI 0.13 1 .000 .002 1.000 1.009 .65

RMSEA = Root Mean Square Error of Approximation. SRMR = Standardized Root Mean Square Residual. CFI = Comparative Fit Index. TLI = Tucker-Lewis-Index.
R2 = amount of variance of the data sets’ subtests explained by g (calculated via an one-factor-model). ∗∗∗ P < 0.001.

Table 3. Cognitive tests used to estimate g in the RUB sample.

Intelligence test Task description No. of items Construct measured

I-S-T 2000 R

1. IST_SEN Complete sentences 20 Verbal intelligence
2. IST_ANA Find analogies 20
3. IST_SIM Recognize similarities 20

4. IST_CAL Solve arithmetic calculations 20 Numerical intelligence
5. IST_SER Complete number series 20
6. IST_SIG Add arithmetic signs to mathematical equations 20

7. IST_SEL Select and reassemble parts of a cut-up figure 20 Figural intelligence
8. IST_CUB Mentally rotate and match 3-dimensional objects 20
9. IST_MAT Solve matrix-reasoning problems 20

10. IST_RET Memorize series of words or figure pairs 23 Retention

11. IST_KNO Multiple-choice questions on 6 knowledge facets: art/literature, economy,
geography/history, mathematics, science, and daily life

84 General knowledge

BOMAT Solve matrix-reasoning problems (5 × 3 matrices) 29 Non-verbal reasoning

BOWIT Multiple-choice questions on 11 different knowledge facets: biology/chemistry,
mathematics/physics, nutrition/exercise/health, technology/electronics,
arts/architecture, civics/politics, economics/laws, geography/logistics,
history/archeology, language/literature, and philosophy/religion

308 General knowledge

ZVT Connect numbers from 1 to 90 based on a specific rule as fast as possible 4 Processing speed

I-S-T 2000 R = Intelligenz-Struktur-Test 2000 R. IST_SEN = subtest Sentence Completion of the I-S-T 2000 R. IST_ANA = subtest Analogies of the I-S-T 2000 R.
IST_SIM = subtest Similarities of the I-S-T 2000 R. IST_CAL = subtest Calculations of the I-S-T 2000 R. IST_SER = subtest Number Series of the I-S-T 2000 R.
IST_SIG = subtest Numerical Signs of the I-S-T 2000 R. IST_SEL = subtest Figure Selection of the I-S-T 2000 R. IST_CUB = subtest Cubes of the I-S-T 2000 R.
IST_MAT = subtest Matrices of the I-S-T 2000 R. IST_RET = subtest Retentiveness of the I-S-T 2000 R. IST_KNO = subtest Knowledge of the I-S-T 2000 R. BOMAT =
Bochumer Matrizentest. BOWIT = Bochumer Wissenstest. ZVT = Zahlenverbindungstest.

parallel test forms, in which each knowledge facet is represented
by 14 multiple-choice questions (Table 3). All participants com-
pleted both test forms, resulting in 308 items. In the BOWIT’s
manual split-half reliability is reported as 0.96, Cronbach’s α

0.95, test–retest reliability 0.96, and parallel-form reliability 0.91
(Hossiep and Schulte 2008).

ZVT

The Zahlenverbindungstest (ZVT; Oswald and Roth 1987) is a
trail-making test to assess cognitive processing speed in both
children and adults. The test consists of 2 short sample tasks
and 4 assessed tasks (Table 3). The reliability across the 4 tasks
is reported as 0.95 in adults. The six-month retest-reliability
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Table 4. Cognitive tests used to estimate g in the HCP sample.

Intelligence test Task description No. of items Construct measured

Penn CNB
1. PMAT Solve matrix-reasoning problems (2 × 2, 3 × 3, or 1 × 5 matrices) 24 Non-verbal reasoning
2. SCPT Indicate when lines (presented for 300 milliseconds) form a

number or a letter
180 Visual attention

3. VSPLOT Rotate one line on a computer screen so that it is parallel to
another line

24 Visual–spatial processing

4. IWRD Memorize 20 words and recognize them afterwards within 40
words including 20 distractors matched for length, imageability,
and concreteness

Form A Verbal episodic memory

NIH Toolbox
1. Flanker Indicate the direction of a central arrow, flanked by arrows

pointing in the same or the opposite direction as the target
40 Executive function (attention)

2. CardSort Assign pictures that vary along 2 dimensions (e.g. shape and
color) to 1 of 2 target pictures so that the pictures match either
in shape or in color (the criterion is displayed and varies
without a predictable pattern)

40 Executive function (cognitive
flexibility)

3. ListSort Repeat stimuli, beforehand presented as a series, in order of size
(first condition: all stimuli come from the same category;
second condition: stimuli belong to 2 categories and must be
repeated in order of size as well as category-specific)

Stop criterion: failure in 2
trials of the same length

Working memory capacity

4. PicSeq Arrange pictures according to a previously seen spatial
arrangement

3 Episodic memory

5. ReadEng Pronounce letters and words as correctly as possible 30–40 depending on
performance

Reading decoding skill

6. PicVocab Choose out of 4 images the one that matches to a spoken word 25 Vocabulary knowledge
7. ProcSpeed Identify as many image pairs as possible, displayed side-by-side,

as identical or not
130 image pairs (time
limit: 90 seconds)

Processing speed

Penn CNB = University of Pennsylvania Computerized Neurocognitive Battery. PMAT = subtest Penn Matrix Reasoning Task of the Penn CNB. SCPT = subtest
Short Penn Continuous Performance Test of the Penn CNB. VSPLOT = subtest Variable Short Penn Line Orientation Test of the Penn CNB. IWRD = subtest Penn
Word Memory Test of the Penn CNB. NIH Toolbox = NIH Toolbox for the Assessment of Neurological and Behavioral Function. Flanker = subtest Flanker
Inhibitory Control and Attention Test of the NIH Toolbox. CardSort = subtest Dimensional Change Card Sort Test of the NIH Toolbox. ListSort = subtest List
Sorting Working Memory Test of the NIH Toolbox. PicSeq = subtest Picture Sequence Memory Test of the NIH Toolbox. ReadEng = subtest Oral Reading
Recognition Test of the NIH Toolbox. PicVocab = subtest Picture Vocabulary Test of the NIH Toolbox. ProcSpeed = subtest Pattern Comparison Processing Speed
Test of the NIH Toolbox.

is reported to be between 0.84 and 0.90 (Oswald and Roth
1987).

Data set HCP
Penn CNB
Four subtests from the University of Pennsylvania Computerized
Neurocognitive Battery (Penn CNB; Gur et al. 2001; Gur et al. 2010;
Moore et al. 2015) were used to assess intelligence (Table 4). These
included the Penn Matrix Reasoning Task (PMAT), the Short Penn
Continuous Performance Test (SCPT), the Variable Short Penn
Line Orientation Test (VSPLOT), and the Penn Word Memory Test
(IWRD). The reliability estimates (Cronbach’s α) for all subtests
of the Penn CNB are reported to be between 0.55 and 0.98 (Gur
et al. 2010). Internal consistency was reported in a Dutch study to
have a median Cronbach’s α of 0.86 across all Penn CNB subtests
(Swagerman et al. 2016).

NIH Toolbox
Seven subtests from the NIH Toolbox for the Assessment of
Neurological and Behavioral Function (http://www.nihtoolbox.
org; Gershon et al. 2013; Weintraub et al. 2013; Heaton et al.
2014) were selected to assess intelligence (Table 4). These were
the Flanker Inhibitory Control and Attention Test (Flanker), the
Dimensional Change Card Sort Test (CardSort), the List Sorting
Working Memory Test (ListSort), the Picture Sequence Memory
Test (PicSeq), the Oral Reading Recognition Test (ReadEng), the
Picture Vocabulary Test (PicVocab), and the Pattern Comparison
Processing Speed Test (ProcSpeed). The NIH Toolbox has been
validated with several American samples (Heaton et al. 2014;

Weintraub et al. 2013). For the subtests, Weintraub et al.
(2013) reported test–retest reliabilities (intraclass correlation
coefficients) between r = 0.78 and 0.99. Heaton et al. (2014) built
and analyzed composite scores and found acceptable internal
consistency (Cronbach’s α between 0.77 and 0.84) as well as
excellent test–retest reliabilities between r = 0.86 and 0.92.

Data set UMN
WAIS-IV
Intelligence was assessed using 5 subtests (Table 5) of the
Wechsler Adult Intelligence Scale, fourth edition (WAIS-IV;
Wechsler 2008): Block Design (WAIS_BD), Matrix Reasoning
(WAIS_MR), Similarities (WAIS_SIM), Vocabulary (WAIS_VC), and
Coding (WAIS_CD). The WAIS-IV subtests’ Cronbach’s αs have
been reported to be between 0.84 and 0.94 and test–retest
reliabilities to range between r = 0.69 and 0.91 (Wechsler 2008).

Data set NKI
WASI-II
The Wechsler Abbreviated Scale of Intelligence, second edition
(WASI-II; Wechsler 2011), measured intelligence. The inventory
has 4 subtests: Block Design (WASI_BD, 13 items), Matrix Rea-
soning (WASI_MR, 30 items), Similarities (WASI_SIM, 24 items),
and Vocabulary (WASI_VC, 31 items), which are comparable to
the subtests from the WAIS-IV (Table 5). The WASI-II can be
administered in about 30 minutes and is considered to be the
measure of choice for brief intelligence assessments. Split-half
reliabilities of the subtests varied between r = 0.87 and 0.91 in the
child norming sample (6–16 years) and between r = 0.90 and 0.92
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Table 5. Cognitive tests used to estimate g in the UMN sample.

Intelligence test Task description No. of items Construct measured

WAIS-IV
1. WAIS_BD Reproduce a shown 2-dimensional pattern with several 3-dimensional

building blocks
14 Perceptual reasoning

2. WAIS_MR Solve matrix-reasoning problems 26 Perceptual reasoning
3. WAIS_SIM Describe the qualitative similarity between 2 words 18 Verbal comprehension
4. WAIS_VC Define or describe words or concepts 30 Verbal comprehension
5. WAIS_CD Add corresponding abstract symbols to as many numbers of a given

sequence as possible within a time limit
135 Processing speed

WAIS-IV = Wechsler Adult Intelligence Scale, fourth edition. WAIS_BD = subtest Block Design of the WAIS-IV. WAIS_MR = subtest Matrix Reasoning of the
WAIS-IV. WAIS_SIM = subtest Similarities of the WAIS-IV. WAIS_VC = subtest Vocabulary of the WAIS-IV. WAIS_CD = subtest Coding of the WAIS-IV.

in the adult norming sample (17–90 years). Test–retest reliability
was r = 0.79 in the child sample and 0.94 in the adult sample. The
interrater reliabilities of the 4 subtests were between r = 0.94 and
0.99, considered exceptionally high (McCrimmon and Smith 2012).

Distribution of intelligence scores
As outlined above, average g levels in the samples might vary,
indicating different degrees of population representation, cohort
differences, and/or test coverage. Because tests differed, we could
not compare intelligence levels among our samples or link g to the
intelligence quotient (IQ) scale. Nevertheless, we tried to estimate
the ranges of intelligence the various samples covered. For the
RUB data set, we used the norming data of the 11 subtests of
the I-S-T 2000 R to estimate IQ scores. The sample’s mean IQ
was 115 (SD = 13.0), one standard deviation above average. The
range of intelligence scores in the HCP data set also seemed to
lie at the higher end of the distribution. Dubois et al. (2018) used
published norming data from the NIH toolbox subtests, reporting
that the sample’s means on all tests were significantly higher
than the means in the full population. We could generate IQ
scores in the UMN and NKI data sets by applying the standard
Wechsler formulae. While the mean (114.1; SD = 15.0) was almost
one standard deviation above average in the UMN data set, it was
about average (101.9; SD = 13.1) in the NKI data set. So, 3 of our 4
samples leaned heavily toward the higher end of the distribution.
This may have impacted which brain region associations we
observed. For example, basic arithmetic tests are basically speed
and accuracy tests for well-educated, high-IQ people (who access
automatized information to do them), but are reasoning tests for
less educated, lower-IQ people (who must think them through).

Acquisition of DWI data
Data set RUB
All images were collected on a Philips 3 T Achieva scanner at
Bergmannsheil Hospital in Bochum, Germany, using a 32-channel
head coil. Diffusion-weighted images were acquired using echo
planar imaging (Table 6). Diffusion weighting was uniformly dis-
tributed along 60 directions using a b-value of 1000 s/mm2. Addi-
tionally, 6 volumes with no diffusion weighting (b = 0 s/mm2) were
acquired as an anatomical reference for motion correction. To
increase the signal-to-noise ratio of diffusion-weighted images,
we acquired 3 consecutive scans that were subsequently averaged
(Genç et al. 2011a; Genç et al. 2011b). The total acquisition time
was 30 minutes.

Data set HCP
All images were collected on a customized Siemens 3 T
Connectome Skyra scanner housed at Washington University
in St. Louis, using a standard 32-channel Siemens head coil.

Diffusion-weighted images were acquired using echo planar
imaging (Table 6; Feinberg et al. 2010; Moeller et al. 2010;
Setsompop et al. 2012; Xu et al. 2012). The complete DWI session
was divided into 6 runs, each lasting approximately 9 minutes
and 50 seconds (total acquisition time of about 1 hour). The 6
runs represented 3 different gradient tables, once acquired in
the right-to-left and in the left-to-right phase-encoding direction.
Each gradient table comprised 90 diffusion weighting directions
as well as 6 acquisitions with b = 0 s/mm2 interspersed throughout
each run. Diffusion weighting was based on a multi-shell scheme
consisting of equally distributed diffusion-weighted images for
b-values of 1000, 2000, and 3000 s/mm2.

Data set UMN
All images were collected on a 3 T Siemens Trio scanner at
the Center for Magnetic Resonance Research at the UMN in
Minneapolis, using a 12-channel head coil. Diffusion-weighted
images were acquired using echo planar imaging (Table 6). Diffu-
sion weighting was uniformly distributed along 71 directions. Nine
measurements with a b-value of 1000 s/mm2 were conducted. The
total acquisition time was 12 minutes, 34 seconds.

Data set NKI
All images were collected on a Siemens Magnetom TrioTim
syngo MR B17 scanner at the NKI in Orangeburg, New York.
Diffusion-weighted images were acquired using echo planar
imaging (Table 6). Diffusion weighting was uniformly distributed
along 128 directions using a b-value of 1500 s/mm2. In addition, 9
volumes without diffusion weighting (b = 0 s/mm2) were obtained.
The total acquisition time was 5 minutes, 58 seconds.

Image processing and analysis
We processed and analyzed all data sets in the same manner.
Since FA is one of the most commonly derived measures from
diffusion data (Smith et al. 2006) and has been observed to be
associated with intelligence in many studies (Genç and Fraenz
2021), we focused on FA. We used voxel-based statistical analysis
of the FA data based on TBSS (Smith et al. 2006), which is part of
Oxford Centre for Functional Magnetic Resonance Imaging of the
Brain’s (FMRIB) Software Library (FSL), version 5.0.9 (Smith et al.
2004). First, DWI images were subjected to brain extraction using
Brain Extraction Tool (Smith 2002). Then, FA images were created
by fitting tensor models to the raw diffusion data using FMRIB’s
Diffusion Toolbox. We transformed the resulting FA images into
a common space via FMRIB’s Nonlinear Image Registration Tool
(Andersson et al. 2007a, 2007b), which uses b-spline represen-
tations of the registration warp fields (Rueckert et al. 1999). For
this purpose, we chose the DTI template FSL_HCP1065_FA_1mm
within FSL, which is based on 1065 participants from the HCP and
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Table 6. Imaging parameters.

Data set TR (in ms) TE (in ms) Flip angle Number of slices Matrix size Voxel size (in mm)

RUB 7652 87 90◦ 60 112 × 112 2 × 2 × 2
HCP 5520 89.5 78◦ 111 145 × 174 1.25 × 1.25 × 1.25
UMN 7900 86 90◦ 64 128 × 128 2 × 2 × 2
NKI 2400 85 90◦ 64 106 × 90 2 × 2 × 2

is available in Montreal Neurologic Institute 152 standard space
(1 × 1 × 1 mm). Next, we created and thinned mean FA images to
generate mean FA skeletons representing the centers of all tracts
common to the sample. We set the FA threshold at 0.20 to include
only major white matter tracts and exclude peripheral tracts,
which are more vulnerable to intra- and intersubject variability.
Each participant’s aligned FA image was projected onto the skele-
ton by filling each skeleton voxel with the FA value of the nearest
tract center. We used the resulting data to compute voxel-based
statistics.

Statistical analysis
We used permutation-based inference (Nichols and Holmes 2002)
to analyze voxel-based statistics. To this end, we used the FSL
tool “randomise” (Winkler et al. 2014) with 5000 permutations
for each analysis. Within the white matter skeleton of each data
set, we used a general linear model to identify positive and
negative associations between g and FA while controlling age,
sex, age∗sex, age2, and age2∗sex. We treated them as nuisance
variables since they explain relatively little (∼10%) of the total
variance in whole-brain average FA (Kochunov et al. 2015), to
be consistent (same control variables as for computing the g
factors), and we were not interested in possible age and sex
differences.

We used threshold-free clustering enhancement (Smith and
Nichols 2009) to avoid arbitrarily specifying a cluster-forming
threshold a priori. We adjusted the resulting statistical parametric
maps for multiple comparisons by the family-wise error rate
thresholded at P < 0.05. We binarized them via the FSL tool
“fslmaths,” so that voxels exhibiting a significant relation between
g and FA were assigned 1 and all remaining voxels 0. We carried
out each step separately in each data set.

As the focal final step, we compared our observations from
the individual data sets to identify white matter areas exhibiting
replicable structure–function associations. For this purpose, we
used the FSL tool “fslmaths” to compute the sums of the 4 bina-
rized maps depicting positive contrasts and the 4 binarized maps
depicting negative contrasts (Fig. 5). This resulted in 2 statistical
parametric maps with values between 0 (no positive/negative
associations between g und FA in any data set) and 4 (positive/neg-
ative associations in all data sets). We thresholded these maps
once again to generate conservative maps only showing those
voxels that exhibited significant associations across all 4 data
sets (100% consensus). We multiplied those conservative maps
with thresholded (value 10) fiber tracts of the Johns Hopkins
University White Matter Tractography Atlas, implemented in FSL,
to determine the anatomical location of the voxels (Mori et al.
2005; Wakana et al. 2007; Hua et al. 2008). We averaged the FA
values of all significant voxels within a voxel cluster for each
participant. These mean FA values were related to g by calculating
partial correlation with age, sex, age∗sex, age2, and age2∗sex as
controls. We did this separately for each data set and results were
visualized using scatter plots.

Additional exploratory analyses
We also took an exploratory and more liberal approach by creating
brain maps including all voxels that exhibited significant associ-
ations in 3 out of 4 data sets (75% consensus).

Beyond that, we conducted further explorative analyses. These
were based on previous studies’ reports that made different obser-
vations for broad, first-order intelligence factors such as verbal
and nonverbal reasoning abilities (Tamnes et al. 2010). First, we
used each of the first-order intelligence factors from each data
set (Figs 1–4) as regressors on FA while adding age, sex, age∗sex,
age2, age2∗sex, and the remaining first-order intelligence factors
for each data set as nuisance factors. For example, the association
between verbal intelligence and FA in the RUB data set was ana-
lyzed with age, sex, age∗sex, age2, age2∗sex, numerical intelligence,
and figural intelligence serving as nuisance factors. Second, we
removed the effects of g from all first-order intelligence factors
and used these variables as regressors on FA, along with age, sex,
age∗sex, age2, and age2∗sex as nuisance variables.

We also tried to compare the first-order intelligence factors by
binarizing, adding, and thresholding their statistical parametric
maps as described above for g to test whether there were robust
observations among our 4 data sets below g. Since the factor
models of our data sets had different first-order factors, it was not
possible to compare them directly in all data sets. One example is
the HCP data set, which does not have a first-order intelligence
factor related to only verbal abilities (Fig. 2). Nonetheless, we
still tried to include this sample in our comparison of first-order
intelligence factors. Hereby, we tested whether there was a robust
relation between FA and verbal abilities by combining the results
of the first-order intelligence factors ver (RUB, UMN, and NKI)
and proc (HCP) (Figs. 1–4). For processing abilities, we combined
the first-order intelligence factors fig (RUB) and proc (HCP, UMN,
and NKI).

Results
Relations between g and FA
Main analysis with 100% consensus.
No voxels exhibited significant negative associations between g
and FA in any of the 4 data sets. In total 188 individual voxels,
0.12% of the white matter skeleton, exhibited significant positive
associations between g and FA in all 4 data sets, controlling age,
sex, age∗sex, age2, and age2∗sex (for the results of the single data
sets, see Supplementary Fig. 1). These voxels could be pooled into
3 contiguous clusters. Cluster “Forceps minor” was the largest and
comprised 97 voxels. It overlapped completely with parts of the
forceps minor as well as with crossing extensions of the anterior
thalamic radiation, the cingulum–cingulate gyrus, and the inferior
fronto-occipital fasciculus in the left hemisphere. Scatter plots
illustrating the associations between this cluster’s mean FA and
g are shown in Fig. 6 (RUB: r = 0.15; HCP: r = 0.14; UMN: r = 0.13;
NKI: r = 0.16). The second cluster “SLF” comprised 79 voxels and
was located around the superior longitudinal fasciculus in the
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Fig. 5. Methodological sequence depicting the different steps of the image analysis and statistical analysis. The TBSS approach was carried out for each
data set separately. We used nonlinear registration to transform individual FA images to a common stereotactic space. By averaging all aligned images,
we obtained mean FA maps (not shown). Next, we thinned these to generate white matter skeletons only including voxels at the center of fiber tracts
common to all participants. We projected each participant’s aligned FA map onto a skeleton by filling the skeleton voxels with FA values from the
nearest relevant tract center (not shown). We used the skeletonized FA maps to compute voxel-based cross-subject statistical comparisons. The second
last column depicts statistical maps showing voxels that exhibited a significant positive relation between g and FA (controlled for age, sex, age∗sex, age2,
and age2∗sex). The last image on the right shows voxels that matched across all 4 data sets.

left hemisphere. Figure 7 shows the 4 scatter plots illustrating
the associations between this cluster’s mean FA and g (RUB:
r = 0.18; HCP: r = 0.14; UMN: r = 0.22; NKI: r = 0.12). The third cluster
“Cingulum” was rather small and comprised 12 voxels. Since this
cluster did not overlap with any of the thresholded fiber tracts, we
used their unthresholded versions to assign the voxels to the fiber
tracts. We observed matching voxels with fading extensions of the
cingulum–cingulate gyrus, the inferior fronto-occipital fasciculus,
and the anterior thalamic radiation in the left hemisphere. The 4
scatter plots illustrating the associations between this cluster’s
mean FA and g are shown in Fig. 8 (RUB: r = 0.14; HCP: r = 0.12;
UMN: r = 0.13; NKI: r = 0.13).

Exploratory approach with 75% consensus.
The more liberal approach, requiring results to replicate in 3 of
the 4 data sets, yielded 8364 voxels, 5.5% of the white matter
skeleton, with significant positive associations between g and FA,
controlling age, sex, age∗sex, age2, and age2∗sex. As depicted in
Supplementary Fig. 2, these voxels were widely scattered across
the skeleton. Supplementary Table 1 shows the distribution of
significant voxels in relation to various major white matter fiber
tracts.

Exploratory approach for first-order intelligent factors
below g
As mentioned above, we also tested whether there were robust
associations below the level of g. The different analyses focused

on first-order intelligence factors did not yield consistent results
for 100% consensus, 75% consensus, or 50% consensus. Hence, we
do not present our observations of single data sets.

Discussion
Previous research focused on the relations between general intel-
ligence and white matter microstructure in healthy participants
has yielded mixed results. Hence, the primary goal of this study
was to find replicable structure–function associations between
general intelligence and white matter FA. Indeed, our analyses,
involving a TBSS approach across 4 independent, cross-sectional
samples, led to the conclusion that such replicable associations
exist. We were able to identify a total of 188 voxels, 0.12% of the
white matter skeleton, that exhibited significant positive relations
between g and FA across all 4 data sets, controlling age, sex,
age∗sex, age2, and age2∗sex. These voxels formed 3 contiguous
clusters. The first was located around the forceps minor, crossing
with extensions of the anterior thalamic radiation, the cingu-
lum–cingulate gyrus, and the inferior fronto-occipital fascicu-
lus in the left hemisphere. The second was located around the
left-hemispheric superior longitudinal fasciculus. The third was
located around the left-hemispheric cingulum–cingulate gyrus,
crossing with extensions of the anterior thalamic radiation and
the inferior fronto-occipital fasciculus.

There were no voxels exhibiting significant negative associ-
ations between g and FA in any of the 4 data sets. This was
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Fig. 6. Associations between g and mean FA values from the cluster “Forceps minor.” the image on the left side shows the voxel cluster named “Forceps
minor” (encircled). The FA values of these voxels were significantly positively associated with g in all 4 data sets (independent of effects of age, sex,
age∗sex, age2, and age2∗sex). The voxels completely overlapped with parts of the forceps minor as well as with crossing extensions of the anterior
thalamic radiation, the cingulum–cingulate gyrus, and the inferior fronto-occipital fasciculus in the left hemisphere. The right side of the figure shows
4 scatter plots, one for each data set. Here, mean FA values from cluster “Forceps minor” are plotted against standardized g values. Age, sex, age∗sex,
age2, and age2∗sex were used as controlling variables. Reporting partial correlation coefficients is not common. We did so only to convey a general sense
of the correlation levels.

consistent with previous research. Multiple studies have exam-
ined the associations between various measures of intelligence
and FA using various approaches including ROI-based, tract-
based, whole-brain-based, and TBSS-based analyses. Despite
these differences in design, these studies almost exclusively
reported positive associations (Genç and Fraenz 2021). This
suggests that individuals with higher intelligence scores tend
to have white matter with stronger anisotropic diffusion
patterns. However, as FA is a metric aggregating many tissue
properties (Beaulieu 2002; Le Bihan 2003; Jones et al. 2013;
Friedrich et al. 2020), the exact neurobiological underpinnings
driving FA signal differences remain unclear. We can thus
only speculate about how higher FA values link to higher g.
Causal implications could not be drawn from our analyses.
Previous studies examining healthy older people suggested
that information processing efficiency might mediate the
association between FA values and g (Deary et al. 2006;
Penke et al. 2010). Whether this finding extends to other age
groups remains to be seen, but it provides first indications that
higher g values might emerge from faster, more direct, or more
parallel information processing. As summarized by Friedrich et al.
(2020), myelination and fiber density have been considered 2

likely neurobiological contributors to FA. Higher FA values might
create links with higher mental speed via greater underlying
myelination enabling faster conduction velocity (Nave 2010). More
direct information transfer throughout the brain might rely on
higher FA values that emerge from more parallel, homogeneous
fiber orientation distributions. Voxels without complex fiber
architectures such as multiple fiber populations, bending fibers,
or crossing fibers run directly from one brain region to another,
thereby enabling efficient and direct network communication.
Greater axon density underlying higher FA might also lead to
higher intelligence by providing more pathways to think through
various solutions to given problems relatively simultaneously.
Future studies are needed to examine intelligence-related
differences in such factors (axon diameter, fiber density, myelin
concentration, and distribution of fiber orientation) affecting FA
values.

Not only were our observations generally consistent with previ-
ous research in direction of correlations, but the loci of voxels we
identified were similarly consistent. Relevant voxels were situated
in regions of the forceps minor, anterior thalamic radiation, cin-
gulum–cingulate gyrus, inferior fronto-occipital fasciculus, and
superior longitudinal fasciculus in the left hemisphere. All these
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Fig. 7. Associations between g and mean FA values from the cluster “SLF.” The image on the left side shows the voxel cluster named “SLF” (encircled).
The FA values of these voxels were significantly positively associated with g in all 4 data sets (independent of the effects of age, sex, age∗sex, age2, and
age2∗sex). The voxels were located around the superior longitudinal fasciculus in the left hemisphere. The right side of the figure shows 4 scatter plots,
one for each data set. Here, mean FA values from cluster “SLF” are plotted against standardized g values. Age, sex, age∗sex, age2, and age2∗sex were used
as controlling variables. Reporting partial correlation coefficients is not common. We did so only to convey a general sense of the correlation levels.

fiber tracts have been reported in previous TBSS-studies (Tamnes
et al. 2010; Dunst et al. 2014; Malpas et al. 2016).

Fibers running through the genu, i.e. the anterior part of the
corpus callosum, form the forceps minor (Catani and Thiebaut
de Schotten 2008). As summarized by Genç and Fraenz et al.
(2021), the genu of the corpus callosum is the brain region in
which FA is most often associated with interindividual differ-
ences in intelligence. The corpus callosum is the largest com-
missural fiber bundle in the brain and consists of approximately
200 million axons (Aboitiz et al. 1992). It connects the left and
the right hemispheres and is thus crucial for interhemispheric
transfer and integration (van der Knaap and van der Ham 2011).
As functional lateralization is a prominent feature of the human
(and other mammalian) brain(s) (Kolb and Whishaw 2015; Karolis
et al. 2019) and the 2 hemispheres play different roles in infer-
ential reasoning in particular (Marinsek et al. 2014), it seems
essential to have recourse to both hemispheres’ specializations
for intelligent behavior. Fibers of the genu especially link the 2
hemispheres’ prefrontal cortices across the hemispheres (Catani
and Thiebaut de Schotten 2008). Macrostructural and functional
properties of the prefrontal cortex have been repeatedly associ-
ated with intelligence (Jung and Haier 2007; Deary et al. 2010a;
Basten et al. 2015). In general, the prefrontal cortex is highly

relevant for higher cognitive skills such as abstract reasoning,
problem solving, memory retrieval, attention, working memory,
social interactions, language, and planning (Cabeza and Nyberg
2000; Wood and Grafman 2003).

The anterior thalamic radiation is a projection tract that con-
nects the thalamus to the frontal lobe (Mori et al. 2002; Mori
et al. 2005). Of all subcortical structures, thalamus volume seems
to be most strongly associated with interindividual differences
in intelligence (Bohlken et al. 2014; Cox et al. 2019). In addition,
the thalamus has a complex connectivity profile, and its various
nuclei establish connections to many areas of the brain (Behrens
et al. 2003; Aggleton et al. 2010). Although the thalamus has
traditionally been considered to serve merely as a relay station
for cortical inputs, more recent observations suggest that its role
in cognition could be much broader. It is conceivable that the tha-
lamus also performs dynamic computations that take contextual
information into account and reconfigure cortical representations
(Rikhye et al. 2018; Dehghani and Wimmer 2019).

The cingulum is a medial associative fiber bundle that runs
within the cingulated gyrus from the orbital frontal regions
along the dorsal surface of the corpus callosum down toward
the temporal lobe (Catani and Thiebaut de Schotten 2008; Bubb
et al. 2018). Its fibers form intracortical connections between the
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Fig. 8. Associations between g and mean FA values from the cluster “Cingulum.” The image on the left side shows the voxel cluster named “Cingulum”
(encircled). The FA values of these voxels were significantly positively associated with g in all 4 data sets (independent of the effects of age, sex, age∗sex,
age2, and age2∗sex). The voxels overlapped with fading extensions of the unthresholded fiber tracts cingulum–cingulate gyrus, inferior fronto-occipital
fasciculus, and anterior thalamic radiation in the left hemisphere. The right side of the figure shows 4 scatter plots, one for each data set. Here, mean
FA values from cluster “Cingulum” are plotted against standardized g values. Age, sex, age∗sex, age2, and age2∗sex were used as controlling variables.
Reporting partial correlation coefficients is not common. We did so only to convey a general sense of the correlation levels.

medial frontal, parietal, occipital, and temporal lobes as well as
different portions of the cingulated cortex. The fiber bundle is
also part of the limbic system and one component of the Papez
circuit (Papez 1937) constituting connections among the anterior
thalamic nuclei, the parahippocampal region, and the cingulate
cortex (Catani and Thiebaut de Schotten 2008; Buyanova and
Arsalidou 2021). The cingulum appears to be involved in various
cognitive domains such as cognitive control, attention, executive
functions, memory, language, and visual–spatial functions
(Takahashi et al. 2010; Kantarci et al. 2011; Bettcher et al. 2016;
Bubb et al. 2018; Buyanova and Arsalidou 2021).

The inferior fronto-occipital fasciculus forms a major associa-
tion fiber bundle linking the orbitofrontal cortex with the ventral
occipital lobe (Catani and Thiebaut de Schotten 2008). Studies
suggest that the inferior fronto-occipital fasciculus participates
in semantic and visual processing as well as attention (Catani
and Thiebaut de Schotten 2008; Leng et al. 2016; Buyanova and
Arsalidou 2021).

The superior longitudinal fasciculus is a major white matter
tract that connects frontal and opercular areas with the
temporoparietal junction and parietal regions (Buyanova and
Arsalidou 2021), allowing widespread intracortical informa-
tion exchange. It is a matter of debate whether the arcuate

fasciculus, which connects brain areas relevant for language
processing (Broca’s and Wernicke’s area), can be considered part
of the superior longitudinal fasciculus or is merely adjacent to it
(Dick and Tremblay 2012; Kamali et al. 2014; Cox et al. 2019).
Buyanova and Arsalidou (2021) noted that the right superior
longitudinal fasciculus has been associated with cognitive
functions such as attention (Frye et al. 2010) and visuospatial
abilities (Hoeft et al. 2007), whereas the left superior longitudinal
fasciculus has been observed to be crucial for language (Dick and
Tremblay 2012) and reading skills (Frye et al. 2010). Buyanova and
Arsalidou (2021) further stated that the arcuate fasciculus has
been related to reasoning abilities and language processing
(Lebel and Beaulieu 2009; Zemmoura et al. 2015). Therefore,
both fiber tracts seem to be crucial for higher-order language
functions (Friederici 2009). Language, in turn, is viewed as an
important cognitive tool for problem solving since the lexicon
symbols encapsulate abstract notions, making them more readily
manipulable (Varley 2007). Grammatical mechanisms have
similar roles in articulating relations among entities. Hence,
language in the form of inner speech may allow tasks to be broken
into finite series of sub-steps that guide reasoning processes
(Varley 2007). Based on this inference, it is not surprising that the
superior longitudinal fasciculus is one of the 4 fiber tracts being
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most often associated in the kinds of tasks used in intelligence
tests (Genç and Fraenz 2021), especially given the constraints (e.g.
many, extremely finite, rigidly structured items, administration
under tight time and space conditions) involved in attempting to
measure intelligence.

Our observations suggest that these brain regions play vital
roles in intelligence test performance via white matter tract
integrity and coherently anisotropic organization, which is
supported by previous research. Jung and Haier (2007) also posited
these fiber tracts’ relevance in their P-FIT model. They proposed
that working on intelligence test reasoning tasks involves
multiple processing stages and harmonic interplay of the brain
regions constituting their “P-FIT” network. More precisely, they
suggested that brain regions in the temporal and occipital lobes
are crucial in successfully recognizing and initially processing
sensory information. Subsequently, they presumed that the
parietal cortex is essential for the interpretation, abstraction,
and elaboration of the information’s symbolic content. The
parietal cortex is believed to interact with frontal regions, which
are thought to orchestrate generation and testing of potential
solutions to given problems. Once a solution has been selected,
it is thought that the anterior cingulate cortex chooses an
appropriate reaction and inhibits alternative responses.

Based on this, Jung and Haier (2007) proposed that the rapid and
error-free transfer of information from posterior to frontal brain
areas depends on underlying white matter integrity. They also
emphasized the importance of information exchange between
parietal and frontal association areas, which would highlight a
role for the superior longitudinal fasciculus (Jung and Haier 2007).
Therefore, our observations relating the superior longitudinal
fasciculus to general intelligence supported the P-FIT model. Our
cingulum observations fit within the P-FIT network. As noted by
Fraenz et al. (2021), the P-FIT network is not organized exclu-
sively intrahemispherically. Hence, interhemispheric information
transfer between prefrontal areas, e.g. via the forceps minor,
seems to be consistent as well. The P-FIT model does not propose
direct connections between occipital and (orbito-)frontal areas.
However, our observations, highlighting the importance of the
inferior fronto-occipital fasciculus, did not necessarily contradict
the model, given that this fiber tract also connects distal cortical
regions of the P-FIT network. Instead, additional connections
offer the possibility of more parallel flows of information. Since
individuals who score identically in an intelligent test may use
different cognitive strategies as well as different brain structures
to reach their performance level (Deary et al. 2010a), there may
be more than one adequate solution path and overall good brain
function may be more important for general intelligence than
using any specific parts well.

Jung and Haier (2007) assumed that brain regions beyond the
cerebral cortex, such as thalamus, hippocampus, and cerebellum,
are involved only in rather basic functions. Hence, they believed
that they would not contribute to interindividual intelligence dif-
ferences significantly. However, more recent studies indicate that
the thalamus and the hippocampus as well as their connections
could play more important roles in reasoning than originally
thought (Bohlken et al. 2014; Rikhye et al. 2018; Cox et al. 2019;
Dehghani and Wimmer 2019; Deary et al. 2022). Our observations,
involving the anterior thalamic radiation, supported these studies
in suggesting that the P-FIT model (Jung and Haier 2007) needs
some updating, which is only to be expected after 15 years more
research.

We initially took a rather conservative analytical approach. To
be considered for discussion, voxels had to exhibit significant

associations between g and FA across all 4 data sets (100%
consensus). A more liberal threshold (75% consensus) yielded
about 44 times more voxels. This was simply because more
data sets inevitably vary in more ways. Moreover, as illustrated
in Supplementary Fig. 2, significant voxel clusters were no
longer exclusively located in the left hemisphere. However,
Supplementary Table 1 indicates that more significant voxels
could be assigned to fiber tracts in the left hemisphere (59.3%,
out of 9 fiber tracts with left–right symmetry 7 had more voxels
in the left hemisphere). As the left and the right hemisphere
differ in their specialized functions (Marinsek et al. 2014; Kolb
and Whishaw 2015; Karolis et al. 2019), both hemispheres
and their functional interaction are relevant for intelligent
behavior.

The additional exploratory analyses of different first-order
intelligence factors did not lead to any overlapping results in even
2 data sets. Our observations were not consistent with Tamnes
et al. (2010), who reported significant positive associations
between FA and verbal/nonverbal reasoning abilities. This could
be because the first-order intelligence factors differed among
samples (Figs. 1–4). As they include much less information than
g, differences in the specific tasks might have impacted these
factors’ contents more than they did g. But our results could also
differ from Tamnes et al’.s because our analyses of these narrower
intelligence factors controlled g itself, which theirs did not, so we
examined only factor-specific variance. g explains about 40%
of total variance in typical test batteries (Deary et al. 2010a),
in our cases 32–65% (Table 2). To resolve such inconsistencies,
future studies should also focus on specific intelligence factors,
although keeping in mind that no factor identified in this
manner actually “carves nature at its joints”. They all vary
considerably depending on specific test battery content and
sampling.

Limitations
Making use of multiple samples, as we did is more likely to yield
replicable observations. However, the question arises why particu-
lar observations in one sample failed to replicate in other data sets
(Supplementary Fig. 1). This might be because there is no robust
association between g and FA, but it might also be that differences
among data sets hindered cross-sample replication. The 4 data
sets included in our study used different intelligence tests, had
different sample sizes, sex ratios, age distributions, and image
acquisition protocols. As can be seen in Supplementary Fig. 1, the
RUB data set was the most common exception to 100% overlap.
This data set differed from the other, more similar 3 in several
aspects: the sample had been collected in Germany and there-
fore influenced by German pedagogies (vs. USA), magnetic reso-
nance imaging (MRI) measurements were obtained on a Philips
scanner (vs. Siemens scanners), and its g-factor residuals had
greater variance despite the sample’s high indicated mean IQ
(Figs. 6–8). As 2 other (HCP and UMN) of our 4 samples leaned
heavily toward the higher end of the intelligence distribution,
population representativeness was limited in these data sets. This
may have heavily impacted which brain region associations we
observed since, for example, basic arithmetic tests are basically
speed and accuracy tests for well-educated, high-IQ people but
reasoning tests for less educated, lower-IQ people. Outlined at the
discussion’s beginning, 2 possibilities for why higher FA values
might show links with higher g are faster or more direct infor-
mation processing due to greater myelination and more parallel,
homogenous distributions of fiber orientation. The RUB data set’s

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/11/6723/6994402 by R

uhr-U
niversitaet Bochum

 user on 08 January 2024

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac538#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac538#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac538#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac538#supplementary-data


Christina Stammen et al. | 6737

intelligence test battery included more verbal tasks with no time
limit (e.g. BOWIT), whereas all the other data sets’ g factors did
not rely so heavily on such tasks and instead included more
nonverbal tasks. This difference could explain why the latter gen-
erated more associations with FA. Furthermore, the RUB sample
mainly consisted of German university students who are not
representative of the European population in age, educational
background, or ethnic composition. As our samples came from
different populations, represented to different degrees, one should
not draw conclusions about humans in general based on our
results. We attempted to minimize the effects of these differences
by calculating g factor scores, standardizing data processing for all
data sets, and statistically controlling age, sex, age∗sex, age2, and
age2∗sex. Nevertheless, these differences might have hindered
detection of potential associations and/or distorted those we did
observe. In general, use of complementary methods, including
fine-grained cortical parcellation schemes in combination with
DWI and graph theory, may lead to new insights and are highly
encouraged.

Conclusion
In conclusion, we reported replicable associations between gen-
eral intelligence and FA among 4 different cross-sectional data
sets. By analyzing data from more than 2000 healthy participants,
we were able to observe a total of 188 voxels with significant pos-
itive associations between g and FA in all 4 data sets, controlling
age, sex, age∗sex, age2, and age2∗sex. These voxels were located
around the forceps minor, crossing with extensions of the anterior
thalamic radiation, the cingulum–cingulate gyrus, and the inferior
fronto-occipital fasciculus in the left hemisphere, around the left-
hemispheric superior longitudinal fasciculus, and around the left-
hemispheric cingulum–cingulate gyrus, crossing with extensions
of the anterior thalamic radiation and the inferior fronto-occipital
fasciculus. Our observations do not imply that other brain’s white
matter areas not observed are irrelevant for intellectual perfor-
mance, but only that the mentioned fiber tracts appear to be more
commonly or intensely relevant to carrying out cognitive tasks
than others. For the most part, our observations were consistent
with previous research on the associations between white matter
correlates and intelligence differences. We hope that future stud-
ies will make use of multiple samples because it is more likely to
avoid false positive observations and could ultimately yield truly
robust findings.
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