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Abstract
Birds can rely on a variety of cues for orientation during migration and homing. Celestial ro-

tation provides the key information for the development of a functioning star and/or sun

compass. This celestial compass seems to be the primary reference for calibrating the

other orientation systems including the magnetic compass. Thus, detection of the celestial

rotational axis is crucial for bird orientation. Here, we use operant conditioning to demon-

strate that homing pigeons can principally learn to detect a rotational centre in a rotating dot

pattern and we examine their behavioural response strategies in a series of experiments.

Initially, most pigeons applied a strategy based on local stimulus information such as move-

ment characteristics of single dots. One pigeon seemed to immediately ignore eccentric sta-

tionary dots. After special training, all pigeons could shift their attention to more global cues,

which implies that pigeons can learn the concept of a rotational axis. In our experiments, the

ability to precisely locate the rotational centre was strongly dependent on the rotational ve-

locity of the dot pattern and it crashed at velocities that were still much faster than natural ce-

lestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation

could be perceived by birds through the movement itself, but that a time-delayed pattern

comparison should also be considered as a very likely alternative strategy.

Introduction
Birds can use a variety of orientation cues to find their way between their breeding and winter-
ing grounds and for homing from an unfamiliar location. The Earth’s magnetic field [1–5]
and/or celestial cues [6–12] provide important cues for compass orientation [2,13–15]. Tradi-
tionally, birds are considered to have two compasses based on celestial cues: a sun azimuth
compass [8,16,17] and a star compass [7,9,10,18,19]. In both of these compasses, the axis of
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celestial rotation seems to play a crucial role, and it is known that hand-raised birds can cali-
brate their magnetic compass by observing either the day-time sky on which the sun and the
polarised light patterns rotate [11,20] or the night-time sky on which the stars rotate [10,21].
Therefore, it cannot be excluded that the sun and the star compasses are parts of a single celes-
tial compass system in birds.

In fact, birds seem to possess the inherent information to look for rotating light dots in the
sky during a sensitive period and to interpret the centre of rotation as North [10,18,19]. Once
the centre of rotation has been determined, birds can show appropriate migratory orientation
by means of their star compass even under a stationary starry sky [10,12,19,22] and they can
also calibrate their magnetic compass accordingly [21,23–26]. Birds seem to have no precon-
ceived ideas about how the star patterns should look like because even an arbitrary star pattern
consisting of just 16 diodes seems to be accepted as the stars by naïve birds [19,21,22,26].

Hence, the ability to detect a centre of rotation of a group of light dots seems to be a crucial
ability for many birds in order to establish a functional celestial compass. However, so far, very
little is known about the abilities of birds to detect rotational centres. In fact, it has never been
shown directly that birds can learn the concept of a rotational centre, and if they can learn it,
which strategy they use. The perceptual strategies employed during this learning process are
possibly inherent to bird vision. We therefore decided to use homing pigeons (Columba livia)
as experimental animals because of their ability to quickly learn diverse visual operant condi-
tioning tasks, including those relating to moving stimuli [27–30].

From a psychophysical perspective, pigeons could detect the rotational axis of a rotating dot
pattern by applying one of two fundamentally different strategies. They could either use local
features of the stimulus, such as a single slowly or non-moving dot, or the global stimulus con-
figuration to deduce its rotational centre. The processing of hierarchical stimuli which contain
local as well as global information is one of the key issues in visual cognition (see [31] for sum-
mary). In humans, the global stimulus configuration usually receives a higher priority [32,33]
(see [34] for review) whereas pigeons commonly show visual precedence for local stimulus
cues [29,31,35–37] despite their general ability to use global cues as well [30,38]. Thus, pigeons
are generally sensitive to both levels of stimulus organisation and they can also be trained to
shift their attention from local to global cues [39,40].

In our rotating dot patterns, the local strategy would be to integrate movement characteris-
tics of single dots such as absolute dot velocity or size of the dot’s circular path, whereas the
global strategy would be to detect coherently moving dots along the stimulus’ rotational axis.
Pigeons are generally very good at differentiating moving from stationary stimuli [41] or in cat-
egorizing between velocities [42], but show rather poor performances in detecting coherent
movements [28].

In a series of conditioning experiments, we tested six homing pigeons for their ability to de-
tect the rotational centre of a rotating dot pattern. After it was clear that pigeons could learn
the task, we specifically tested four strategies pigeons could use to solve it:

1. Do pigeons exploit the symmetry of dot patterns and detect the patterns' centre of mass
rather than the centre of rotation?

2. Do pigeons search for slowly moving dots in the rotating dot pattern as a signal for the posi-
tion of the rotational centre?

3. Do pigeons integrate between the rotational velocities of single dots in the rotating dot pat-
tern, such that the presence of dots very close to the rotational centre should facilitate the
detection of the pattern’s rotational centre?

Rotational Centre Detection in Pigeons
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4. Can pigeons avoid a local search strategy based on movement characteristics of single dots
in the rotating dot pattern? In this case, their pecking response should not be influenced by
the presence of stationary dots in the rotating dot pattern other than in the pattern’s
rotational centre.

Thus, the first aim of the present study is to use an operant conditioning paradigm to test
whether homing pigeons can learn to detect a centre of rotation in an arbitrary dot pattern.
The second aim of this study is to investigate the perceptual strategies homing pigeons use to
detect a rotational centre of a moving dot pattern.

Methods

Subjects
The experiments were carried out with six naïve adult homing pigeons (Columba livia f. domes-
tica). Between the experiments, the birds were kept in individual wire mesh cages in a group
room with visual contact to each other in a constant 12 h light dark cycle. The birds obtained
water ad libitum and their weight was maintained at 85–90% of their free feeding weight. The
experiments were approved by a national ethics committee of the state of North-Rhine-West-
phalia, Germany (LANUV NRW, permit number AZ:8.87–50.10.37.09.277).

Apparatus
The pigeons were trained individually in a custom-made operant conditioning chamber (Skin-
ner-Box) with a size of 38 x 38 x 42 cm. The backside of the box was equipped with an active
matrix TFT LCD touch display (Elo 1515L, Tyco Electronics, average luminance 70 cd/m²,
1024 x 768 pixels, 75 Hz), so that the bird had access to an area of 23.6 x 20 cm of the screen. A
feeder was positioned centrally beneath the screen. The LED house light, feeder illumination,
stimulus protocol and data recording were controlled by functions of the Biopsychology Tool-
box [43] in Matlab R2009a.

Training
Initially, the birds were trained in an auto-shaping procedure to peck onto a stimulus shown
on the screen to receive a food reward. The stimulus was a filled white circle of 1 cm in diame-
ter in the centre of the black screen and was presented for 5 s or until a peck had occurred on
the stimulus. When the pigeons reliably responded to the stimulus in at least 70% of the trials
they were transferred to a continuous reinforcement schedule where one correct peck was suffi-
cient for being rewarded (FR1) and the stimulus size was concurrently reduced to 0.35 cm in
diameter. After the pigeons again showed a stable pecking response in at least 70% of the trials,
this small stimulus became the start key on which the birds had to peck first within 20 s to initi-
alise each trial. Initially, the same rotating stimulus was presented in each trial consisting of
two bluish dots of 0.4 cm in diameter that rotated with a rotational speed of 7.2 degrees per sec-
ond around a white dot (0.35 cm diameter) on a black background. The birds had to peck on
the white dot within 20 s. In the course of two month, the number of dots in a pattern, the loca-
tion of the pattern on the screen, the number of patterns per session and the rotational speed of
the pattern were consecutively modified so that eventually, during one session, each trial pre-
sented one of four randomly selected rotating patterns consisting of varying numbers of small
(0.2 cm diameter) bluish dots on a black background. In each trial, the rotating dot stimulus
was presented for 20 s or until a peck into the rotational centre of the pattern had occurred.
The patterns had an overall size of 10 x 10 cm and rotated around itself with a rotational veloci-
ty of 180 degrees per second at randomly chosen positions on the black screen. The rotational
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movement was achieved by updating a stack of 100 gif-frames that were rotated by 3.6 degrees
counter-clockwise to the preceding frame every 0.02 s. We were aware of the fact that the re-
sulting frame rate of 50 Hz was far below the critical flicker frequency (CFF) in pigeons, which
can be up to 145 Hz under bright illumination [44]. However, during stimulus presentation,
the LED house light was switched off and the light intensities emitted by the stimulus on the
computer screen usually ranged between 2.8 ± 0.6 lux (mean ± sd) at a distance of 1 cm from
the screen. Under such dim light conditions, the CFF of pigeons should be comparable to that
in humans [45] so that a possible flickering of moving stimuli on a video screen should not
cause disturbances to the birds [28,46].

In the rotational centre, the rewarded area (pecking field) of 1 x 1 cm in size was initially in-
dicated by a small (0.2 cm diameter) white dot. By reducing the opacity level in steps of 50%,
25%, 10%, 7%, 5% and 3%, the white dot gradually faded away so that in the end of the training,
the pigeons had to find the rotational centre of the dot pattern without any indications of the
pecking field.

Testing
Each test session lasted up to one hour or until 80 rewards were gained. During the test ses-
sions, novel dot patterns that were not used during training were presented to the pigeons. In
each trial, one of four different stimuli was randomly selected and presented at random loca-
tions set by the computer so that the rotational centre could be located anywhere on the touch
screen. The stimulus covered either a small portion of the screen (10 x 10 cm) or the entire
screen (40 x 40 cm, experiment 1). In the large stimulus, parts of the pattern temporarily disap-
peared during the rotation so that the pigeons could not derive the rotational centre from the
stimulus size or from the centre of mass of the stimulus. During any given session, the stimulus
size was kept constant. The pigeons ran one session daily and they were weighed on a scale be-
fore and after each session. For each session, the overall performance (percentage of correct tri-
als), number of rewards, number of not initialised and of unsuccessful trials, the coordinates of
each peck and of the presented stimulus on the screen, gif-frame number of each peck, and
peck times were automatically recorded by the computer.

Statistics
For analyses, the first peck occurring at least 200 ms after stimulus initiation was defined as the
pecking response of the individual pigeon to the presented stimulus in the given trial. This was
independent of whether the given trial was successful (rewarded) or not. Since pigeons working
for food rewards peck with their beaks slightly open [47] and because the pigeons in our exper-
iments usually pecked more than once on the start key, the 200 ms delay time was necessary to
avoid scoring multiple pecks onto the start key as a response to the consecutively presented
stimulus. Reaction times of pigeons in visual search tasks typically vary between 200–500 ms
depending on the complexity of the visual display and reinforcement ratio [48–50]. We as-
sumed a reaction time of 300 ms and therefore considered a given peck to be a response to the
pattern the pigeon saw 300 ms before the peck.

The peck locations were analysed relative to the centre of the rotating dot pattern (rotational
centre) and relative to the centre of the dotted stimulus area. This area centre corresponded to
the centre of mass of the dot pattern. Thus, the location of the centre of mass always varied
with the distribution of dots over the whole 10 x 10 cm stimulus area (Fig. 1). The more asym-
metric the dots were distributed over the stimulus area relative to the rotational centre, the
more separated the rotational centre and the centre of mass were from each other (Fig. 1a).
Contrary, in symmetric patterns the rotational centre and the centre of mass coincided
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(Fig. 1b). For the large stimuli in experiment 1, the centre of mass was defined as the centre of
the screen since the dot pattern stretched beyond the limits of the screen. Thus, as long as the
dots were mostly evenly distributed over the screen (for the visible part of the dot pattern) the
dot pattern's centre of mass corresponded to the screen centre which was also the location of
the previously shown start key (Fig. 1c).

For each individual pigeon, the median distances of all first pecks recorded under the given
condition were calculated relative to the rotational centre of the dot pattern, its centre of mass
or the screen centre and compared by a Wilcoxon signed-rank test. Subsequently, the equiva-
lent group mean distances with standard errors (SE) for each tested condition were calculated
and compared by a paired t-test. Comparisons of more than two conditions were performed
on the individual peck distances to the rotational centre by a Scheirer-Ray-Hare test (SRH-test)
which was based on rank sums. If significant a post hocmultiple comparison test with a

Fig 1. Relation between the centre of rotation (solid crosses) and centre of mass (dashed crosses) in small 10 x 10 cm dot patterns (a + b) and in
large 40 x 40 cm dot patterns (c + d) covering the whole screen. Solid squares represent the limits of the computer touch screen; dashes squares indicate
the stimulus boundaries, which were not visible to the pigeons because both the background of the screen as well as the background of the stimulus were
presented in black. The centre of rotation was always located in the centre of the stimulus boundaries (dashed squares) but the stimulus could appear
anywhere on the computer screen. In the large stimuli (c + d), the pattern exceeded the screen limits. Arrows indicate the overall rotation direction of the
stimulus. The more asymmetric the dots were arranged in the rotating dot pattern with respect to its rotational centre (solid crosses), the greater the distance
was between the rotational centre and the centre of mass (dashed crosses). In symmetric dot patterns, the rotational centre and the centre of mass coincided
(b) whereas in the large stimuli (c + d), where dots were distributed all over the screen, the centre of mass of the visible part of the stimulus always coincided
with the centre of the screen, no matter where the patterns' rotational centre was located.

doi:10.1371/journal.pone.0119919.g001
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Bonferroni correction was computed. If needed, further statistics are described in the individu-
al methods sections of the particular experiments.

The Experiments

Experiment 1: Are pigeons able to find the centre of a rotating dot
pattern?
The first experiment tested whether pigeons were able to find the rotational centre of an arbi-
trary dot pattern. The general testing procedure is described above. The pigeons ran three test
sessions containing six unfamiliar asymmetric patterns of the small stimulus size (10 x 10 cm)
and five test sessions each containing four unfamiliar patterns of the large stimulus size (40 x
40 cm) covering the whole screen.

Results and Discussion. The overall performance of the individual pigeons was 94 ± 5%
correct trials relative to the total number of all initialised trials for the small stimuli and 63 ±
7% for the big stimuli. The individual median peck distances relative to the patterns’ centre of
rotation were significantly smaller than the peck distances relative to the patterns’ centre of
mass for the small stimuli (1.70 ± 0.20 cm vs. 2.13 ±0.15 cm; paired t-test: t = -3.19, sd = 0.33,
df = 5, p = 0.02; Fig. 2a) and relative to the centre of the screen for the large stimuli (2.02 ± 0.24
cm vs. 4.04 ± 0.14 cm; paired t-test: t = -6.03, sd = 0.82, df = 5, p = 0.002; Fig. 2b). Individual
peck distances to the rotational centre varied significantly between the different presented dot
patterns for both the small (SRH-test: H(stimulus) = 21.57, df = 5, p< 0.001) and the large sti-
muli (SRH-test: H(stimulus) = 519.79, df = 19, p< 0.001). Individual pigeons also responded
differently to the different presented patterns both for the small stimuli (SRH-test: H(pigeon) =
125.68, df = 5, p< 0.001 and H(pigeon�stimulus) = 59.93, df = 25, p< 0.001) and for the big
stimuli (SRH-test: H(pigeon) = 187.24, df = 5, p< 0.001 and H(pigeon�stimulus) = 142.79,
df = 95, p = 0.001).

The results of the first experiment indicate that the pigeons were able to find the rotational
centre in unfamiliar dot patterns. Overall, their performances lay well above chance level. Our
pigeons did neither simply peck somewhere on the computer screen nor did they choose to
peck into the centre of mass of the rotating stimulus. The pigeons were even able to solve the
task when parts of the pattern disappeared beyond the screen, although with lower perfor-
mance levels. This drop in performance is possibly related to some extent to the fact that the re-
warded pecking field of 1 cm² covered 1% of the stimulus area in the small, but only 0.21% in

Fig 2. Pigeons significantly preferred pecking in the rotational centre of the rotating dot patterns over pecking in the centre of mass of both the 10
x 10 cm stimuli (a) and the 40 x 40 cm stimuli (b).Open circles depict individual median peck distances in cm for each pigeon; bars depict group mean
peck distances in cm with standard errors. Paired t-test: * p< 0.05, ** p< 0.01.

doi:10.1371/journal.pone.0119919.g002
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the large stimulus array. Thus, it was easier to find the pecking field in small
stimulus configurations.

These results imply that our conditioning paradigm worked. However, we noticed a consid-
erable scatter in the individual peck distances relative to the rotational centre depending on the
presented dot pattern. In the next experiments, we therefore modified single aspects of the dot
patterns to figure out how the pigeons managed to find the rotational centre.

Experiment 2: Are pigeons using dot density as an indicator for the
rotational centre?
The first experiment revealed that the pigeons were able to locate the rotational centre of the
rotating dot pattern but did not indicate their preferred perceptual strategy. One strategy could
be to simply peck at the densest part of the pattern. To test this possibility, we varied dot densi-
ties in the second set of experiments. Fig. 3 shows an example pattern series. The basic pattern
contained four clusters of ten dots each (Fig. 3a). The four clusters were arranged symmetrical-
ly around the patterns’ rotational centre (90° apart from each other). The dot closest to the ro-
tational centre in each cluster was positioned 1.4 cm from the rotational centre. This distance
was chosen to clearly separate between pecks into the rotational centre or within a dot cluster.
There was no dot located in the rotational centre itself. In this symmetrical basic dot pattern,
the centre of mass and the rotational centre coincide at any rotational angle of the pattern. In
the next three conditions (Fig. 3b-d), the centre of mass of the dot pattern became more and
more separated from the rotational centre. This was achieved by reducing the number of dots
in all but one dot cluster to seven, four and one dot, respectively. The remaining dot cluster al-
ways maintained its ten dots. Thus, in the most asymmetric condition (Fig. 3d), the centre of
mass of the dot pattern and its rotational centre are separated by 1.58 cm ± 0.23cm (mean ± sd,
n = 4), and the centre of the largest cloud of dots was always separated from the rotational cen-
tre by 2.17 ± 0.33 cm. Four different basic patterns were designed. Each pigeon participated in
eight test sessions. In a given test session, the four versions of a single basic pattern were pre-
sented in a randomised fashion.

To evaluate the direction of the pigeons’ pecks, peck orientation angles relative to the loca-
tion of the biggest dot cluster at the time when the peck was recorded were calculated for each
individual peck and averaged for each individual pigeon in each symmetry condition by vector
addition. From these data, a group mean orientation angle was calculated and plotted for each
symmetry condition and tested for significance by a Rayleigh test for circular data [51].

Results and Discussion. When the four dot clusters were mostly symmetrically distribut-
ed around the patterns’ rotational centre, the pigeons’ pecks were not biased towards a particu-
lar dot cluster (10:10:10:10 dots: Rayleigh test: mean = 112°, r = 0.68, n = 6, p = 0.06; Fig. 4a;
and 10:7:7:7 dots: Rayleigh test: mean = 99°, r = 0.47, n = 6, p = 0.29; Fig. 4b) which indicates
that the pecks were randomly distributed around the dot patterns’ rotational centre. In the two
most asymmetric dot configurations, the pigeons significantly biased their pecks towards the
largest dot cluster (10:4:4:4 dots: Rayleigh test: mean = 1° ± 38°, r = 0.74, n = 6, p = 0.03;
Fig. 4c; and 10:1:1:1 dots: Rayleigh test: mean = 3° ± 14°, r = 0.95, n = 6, p< 0.01; Fig. 4d).

Surprisingly, the median peck distances relative to the centre of the rotating dot pattern
were not increased by this bias since they did not correlate with pattern symmetry (r = 0.0062,
p = 0.977; open circles in Fig. 5) and the pigeons still significantly preferred the rotational cen-
tre over the centre of mass of the dot pattern (filled circles in Fig. 5). Thus, the actual peck posi-
tions of the pigeons were attracted towards higher dot densities, but still remained close to the
overall rotational centre. Consequently, the pigeons also did not peck into the largest cloud of
dots (filled squares in Fig. 5).
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Fig 3. Example of a dot pattern that was part of a series of four symmetry conditions rotating counter clockwise (arrow). In the basic pattern (a), the
four dot clusters containing ten dots each were symmetrically arranged in around the patterns' rotational centre. In the next three conditions (b-d), the upper
dot cluster always maintained its ten dots whereas, in the remaining three dot clusters, the number of dots was reduced to seven dots each (b), four dots each
(c) or one dot each (d). Note that the overall geometrical dot configuration of the remaining dot cluster remained identical in all conditions. The dot closest to
the pattern's rotational centre of each dot cluster was always located 1.4 cm from the rotational centre. In the symmetrical condition (a), the pattern's centre of
mass coincided with the pattern's rotational centre (0.09 ± 0.03 cm; mean ± sd; n = 4), but in the three asymmetrical conditions, the location of the pattern's
centre of mass increasingly shifted towards the largest dot cluster with distances from the rotational centre of 0.32 ± 0.05 cm (b), 0.69 ± 0.10 cm (c) and 1.58
± 0.23 cm (d). In contrast, the centre of the largest dot cluster kept its position relative to the pattern's rotational centre in all four symmetry conditions (2.17 ±
0.33 cm).

doi:10.1371/journal.pone.0119919.g003
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These results reveal that the varying density of dots had no influence on the absolute peck
distances of the pigeons relative to the rotational centre of the dot pattern. However, high dot
densities strongly affected the orientation bias of the pecks. This might possibly be related to
the tendency of pigeons to peck at contrast rich areas or the edges of a presented stimulus [47]
rather than into the middle of an “uniform” stimulus area (example peck locations in figures
one and two in [52] or figure seven in [53]).

This experiment also provides an experimental estimate of the reaction times of our pigeons
for this specific task. As the stimuli rotated counter-clockwise, a clockwise or counter-clockwise
bias of the peck orientations would indicate a delayed or advanced pecking response of the pi-
geons. However, in the most asymmetric condition, the peck orientations precisely matched
the orientation of the largest dot cluster. This indicates that the assumed reaction time of
300 ms [48–50] fits very well to the behavioural responses of our pigeons.

Despite the clear bias towards the larger cloud of dots, the pigeons were still able to solve the
task and their peck distances relative to the centre of rotation did not increase with increasing
asymmetry of the pattern. Therefore, we conclude that pigeons do not necessarily use dot den-
sities to locate the rotational centre of a rotating dot stimulus even when dots in the rotating
dot pattern are extremely biased towards one dot cluster.

Fig 4. Peck orientations relative to the location of the largest dot cluster in the rotating dot pattern for
each symmetry condition. In the first two conditions (a + b), the pigeons did not significantly bias their pecks
towards a particular dot cluster (a: circular mean = 112°, r = 0.68, n = 6, p = 0.06; b: circular mean = 99°,
r = 0.47, n = 6, p = 0.29). In the two more asymmetrical conditions (c + d), the pigeons significantly directed
their pecks towards the largest cluster of dots (c: circular mean = 1° ± 38°, r = 0.74, n = 6, p = 0.03; d: circular
mean = 3° ± 14°, r = 0.95, n = 6, p< 0.01). Numbers indicate the size of the dot clusters with the largest dot
cluster always depicted at the top of each diagram (corresponds to 0°). Filled circles are the mean peck
orientation angles relative to the largest dot cluster for each bird. Arrows indicate the group mean peck
orientation angles. The inner dashed circles represent the length of the mean vector required for 5%
significance and in d) 1% significance of the peck directions according to the Rayleigh test. Solid lines
flanking the mean vector in c) and d) indicate the 95% confidence intervals for the mean direction.

doi:10.1371/journal.pone.0119919.g004
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Experiment 3: Does the rotational speed affect the performance of the
pigeons?
Reducing the rotational speed of the dot pattern leads to smaller movement distances of single
dots of the pattern, which should make it harder to detect the rotational centre. Therefore, ex-
periment 3 was designed to test if the rotational speed of the dot patterns influenced the ability

Fig 5. Pigeons significantly preferred to peck in the patterns' rotational centre (open circles) over pecking in the patterns' centre of mass (filled
circles) and over pecking in the centre of the largest dot cluster (filled squares) in each symmetry condition. The peck distances are shown as group
mean peck distances in cm with standard errors and are compared by a paired t-test in each condition (** p< 0.01, *** p< 0.001). In the symmetrical
condition, the dot patterns' centre of mass coincided with the patterns' rotational centre but shifted towards the largest dot cluster with increasing asymmetry
of the pattern. In contrast, the location of the centre of the largest dot cluster remained constantly positioned 2.17 ± 0.33 cm (mean ± sd) away from the
patterns' rotational centre (see Fig. 3).

doi:10.1371/journal.pone.0119919.g005

Table 1. The rotational speed of the rotating dot patterns was modified by varying the number of gif-frames for a full 360° rotation resulting in
smaller angular distances in° between two successive frames as well as by the frame update time in s resulting in slower frame rates in Hz.

rotational speed [°/s] number of frames rotation per frame [°] update time [s] frame rate [Hz]

180 100 3.6 0.02 50

90 100 3.6 0.04 25

60 100 3.6 0.06 16.7

45 200 1.8 0.04 25

22.5 200 1.8 0.08 12.5

11.25 400 0.9 0.08 12.5

5.625 800 0.45 0.08 12.5

3 800 0.45 0.15 6.7

doi:10.1371/journal.pone.0119919.t001
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of pigeons to find the centre of rotation. Our pigeons ran four test sessions and we used a mix
of the same four dot patterns in all sessions. We defined eight speed categories (table 1) and
each of the four dot patterns was presented in two different speed categories (one fast and one
slow) during one given session. To avoid pattern effects, the pattern—speed assignment was
re-mixed in the next sessions, so that in the end of the four sessions each pattern had been pre-
sented in each speed category to all pigeons. The rotational speed of the patterns was modified
by the number of gif-frames per image (100–800 frames) and by the time for updating the gif-
frames (0.02–0.15 s) resulting in different frame rates at different speed categories as listed in
table 1. Parameters were set to achieve a smooth rotation of the stimulus trading off frame
loading time by the computer. Pecks to the rotational fix point were not rewarded before the
stimulus had been presented for at least 1.5 s to avoid random pecking in the slow rotating sti-
muli. To test for a correlation between rotational speed and the individual median peck dis-
tances relative to the rotational centre, a non-linear curve fit was performed.

Results and Discussion. The individual median peck distances to the rotational centre
were significantly influenced by the rotational speed of the presented dot pattern (SRH-test: H
(speed) = 910.23, df = 7, p< 0.001). The faster the pattern rotated, the closer the pecks were to
the rotational centre (Fig. 6). Over all speed categories, individual pigeons showed different
pecking responses (SRH-test: H(pigeon) = 38.25, df = 5, p< 0.001) but their peck distances rel-
ative to the rotational centre did not differ within a given speed category (SRH-test: H(pigeon �

speed) = 40.11, df = 35, p = 0.254).

Fig 6. Decreasing the rotational speed of the dot pattern led to increased individual median peck distances relative to the pattern's rotational
centre (open circles). The data points are best fitted by the exponential equation y = 0.53 + 3.09 * e(-0.03x), r² = 0.84 (solid regression line). The individual
median peck distances relative to the pattern's centre of mass (filled circles) also increased with decreasing rotational speed (dashed regression line:
y = 1.18 + 2.37 * e(-0.03x), r² = 0.81). Error bars represent the 95% confidence intervals for each predicted regression point.

doi:10.1371/journal.pone.0119919.g006
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Fig. 6 depicts the pigeons’ performance as a function of the rotational speed of the presented
dot pattern: The average peck distance to the rotational centre increased exponentially with de-
creasing rotation velocity following the equation y = 0.53 + 3.09 � e(-0.03x); r² = 0.84.

At a speed of 5.625 degrees per second or less, there was no detectable difference between
the pigeons’ group mean peck distance relative to the patterns’ rotational centre and relative to
the patterns’ centre of mass (3.09 ± 0.31 cm vs. 3.07 ± 0.19 cm, paired t-test: t = 0.10, sd = 0.53,
df = 5, p = 0.924; table 2). This implies that at this low level of rotational speed, the pigeons
could no longer locate the rotational centre of the rotating dot pattern. Conversely, at speed
levels above 5.625°/s, the pigeons significantly preferred the rotational centre over the centre of
mass (table 2). However, since the frame rate (table 1) was 12.5 Hz or less in the conditions
with a rotational speed of 22.5 degrees per second or less, we cannot exclude that the birds have
no longer perceived the pattern as moving and that this could be the main reason, why they
could no longer detect the centre of rotation.

Our results are in line with previous studies examining the influence of rotational speed on
the discrimination of rotation directions. Koban and Cook [54] also described an exponential
loss of discrimination ability in pigeons with decreasing rotational speed. The performances of
their pigeons were still above chance level even at their lowest rotational speed of 13°/s [54].

Another important issue concerning the methodology we used to create different rotational
velocities should also be considered. We did not only increase the number of frames to achieve
a full rotation resulting in a smaller angular difference between the dots of two successive
frames, but also decreased the frame rate. Therefore, the rotation might have looked jerkier to
the pigeons at lower rotational speeds because pigeons possess a higher critical flicker fusion
frequency (CFF) than humans [44]. Thus, the task to find the rotational centre of the stimulus
could have become more difficult not only because of slower rotational speeds but also because
of possible flickering of the stimulus [45]. However, the CFF also decreases at lower light inten-
sities [44] and keeping in mind that our stimuli emitted a very dim light intensity of about 2.8

Table 2. Decreasing the pattern's rotational speed resulted in increasing mean peck distances relative to the patterns' rotational centre.

rotational speed [°/s] mean distance to centre of
[cm]

paired t-test

rotation Mass t sd df p

180 0.57 1.22 -5.92 0.27 5 0.0020**

90 0.72 1.39 -7.89 0.21 5 0.0005***

60 0.94 1.60 -7.99 0.20 5 0.0005***

45 1.29 1.97 -6.45 0.26 5 0.0013**

22.5 2.09 2.49 -2.94 0.33 5 0.0321*

11.25 2.74 2.98 -3.61 0.16 5 0.0154*

5.625 3.09 3.07 0.10 0.53 5 0.9238

3 3.34 3.48 -1.08 0.32 5 0.3306

At a rotational speed of 5.625 °/s and slower, the pigeons' mean peck distances relative to the rotational centre of the dot pattern were statistically

indistinguishable from the pigeons' mean peck distances relative to the patterns' centre of mass.

* p < 0.05,

** p < 0.01,

*** p < 0.001

doi:10.1371/journal.pone.0119919.t002
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± 0.6 lux (see method section) and also that the spatial angle between two successive frames at
low rotational velocities was about 0.45 degrees, we assume that flickering did not affect the
performance of the birds.

Experiment 4: Do pigeons search for slowly moving dots close to the
rotational centre?
The previous experiments revealed that the rotational speed of the presented stimulus strongly
affected the discrimination precision of the pigeons. As dots close to the rotational centre move
with a slower relative speed pigeons could simply search for slow moving dots close to the cen-
tre of rotation. This would become more difficult with decreasing rotational velocities of the
dot patterns. Furthermore, the pigeons were initially trained to peck at a stationary dot located
in the rotational centre of the dot pattern. In the course of the training, that dot gradually faded
away. Therefore, experiment 4 was designed to test if our pigeons simply pecked at slow mov-
ing dots located close to the patterns’ rotational centre.

We created five unfamiliar basic dot patterns for this experiment. The basic patterns were
always the same except for the dot located closest to the rotational centre (the most central
dot). The most central dot was either located exactly in the centre (in this case the dot did not
move at all; Fig. 7a) or 0.6 cm, 1.2 cm or 1.8 cm away from the rotational centre (Fig. 7b-d),
with all other dots being kept constant. Fig. 7 shows an example series of patterns. Each pigeon
participated in five test sessions. In each of these single sessions, only one of the five pattern se-
ries was presented. Over the five sessions, each pigeon was presented with each of the five pat-
tern series on one occasion.

Results and Discussion. The individual peck distances relative to the rotational centre de-
pended significantly on the location of the central dot (SRH-test: H(dot distance) = 798.12,
df = 3, p< 0.001). However, there was individual variation in the peck distances and individual
pigeons responded differently to the different pattern modes (SRH-test: H(pigeon) = 198.30, df
= 5, p< 0.001 and SRH-test: H(pigeon � dot distance) = 128.05, df = 15, p< 0.001). Pigeon
818 showed generally greater peck distances relative to the rotational centre than all other pi-
geons (multiple comparison test: p< 0.001; diamonds in Fig. 8).

In addition, the individual median peck distances relative to the rotational centre increased
linearly with increasing distance of the most central dot from the rotational centre (r = 0.81,
p< 0.0001; Fig. 8). This indicates that the location of single dots near the rotational centre of
the pattern might guide the pigeons’ pecks. With increasing drift of the most central dot away
from the rotational centre of the pattern, the pigeons apparently compromised between the
most central dot and the rotational centre. At a distance of 0.6 cm to the rotational centre of
the pattern, the pigeons pecked closer to the most central dot than to the rotational centre
(0.63 ± 0.18 cm vs. 0.82 ± 0.15 cm; paired t-test: t = 4.90, sd = 0.095, df = 5, p = 0.0045; Fig. 9).
But when the most central dot was located at a distance of 1.2 cm to the rotational centre,
the peck distances of the pigeons relative to the most central dot or relative to the centre of ro-
tation did not differ (1.46 ± 0.11 vs. 1.52 ± 0.12 cm; paired t-test: t = -0.74, sd = 0.198, df = 5,
p = 0.493; Fig. 9). In contrast, when the most central dot was located 1.8 cm from the rotational
centre, the pigeons’ peck distance to the most central dot was significantly greater than to the
rotational centre (2.15 ± 0.11 cm vs. 1.72 ± 0.14 cm; paired t-test: t = -3.10, sd = 0.344, df = 5,
p = 0.027; Fig. 9), but the precision with which the pigeons detected the rotational centre
decreased further.

These results indicate that dots located close to the patterns’ rotational centre influenced the
pigeons’ pecking response. The dot closest to the centre of rotation moves less than dots located
further away. At the rotational speed of 180°/s of our dot stimuli it should be very easy for the
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pigeons to identify slowly moving dots close to the patterns’ rotational centre by velocity cate-
gorisation [42]. In contrast, at a dot distance of 1.8 cm to the rotational centre of the dot pat-
tern, the velocity differences between neighbouring dots are decreasing and it should become
more difficult to find the rotational centre by velocity categorisation. However, at a distance of
1.8 cm to the rotational centre, also other dots of the pattern appear which can be similarly

Fig 7. Example of a dot pattern series in which a single dot (depicted here in black) were located exactly in the pattern's rotational centre in the
first experiment (a) and was then shifted relative to the pattern's rotational centre (indicated here by a cross) by 0.6 cm (b), 1.2 cm (c) or 1.8 cm (d)
while the remaining dot configuration (depicted here in grey) remained identical.Other dots close to the pattern's rotational centre were located at least
1.6 cm away from the rotational centre.

doi:10.1371/journal.pone.0119919.g007
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attractive to the pigeons. Thus, the greater peck distances relative to the most central dot in pat-
terns with a minimum dot distance of 1.8 cm relative to the patterns rotational centre do not
necessarily imply that, in this case, the pigeons actually pecked at the rotational centre or even
changed their search strategy.

Our results also hint to another important aspect of the pigeons’ perceptual strategy. In dot
patterns, the most central dot was located only 0.6 cm from the patterns’ rotational centre, the pi-
geons actually pecked at that particular dot instead of pecking at the rotational centre. This
might have been augmented because the pigeons were initially rewarded for pecks at a stationary
dot in the rotational centre of the dot pattern. Therefore, in the next experiments, we introduced
additional stationary dots in the rotating dot patterns to investigate the pigeons’ search strategies.

Experiment 5: Do pigeons peck at any stationary dot in a rotating dot
pattern?
The previous experiments revealed that the pigeons’ pecking response might be strongly influ-
enced by the presence of stationary or slow-moving dots close to the dot patterns’ centre of ro-
tation. We therefore designed the next experiments to specifically investigate if the pigeons
actually search for slowly or non-moving dots in the dot patterns rather than searching for the
centre of rotation.

In the first test series, critical stimulus patterns that contained an additional non-moving
dot inserted into the pattern at 1 cm, 2.5 cm or 4 cm from the rotational centre were mixed
into normal test sessions as non-rewarded catch trials. Each pigeon participated in four

Fig 8. Peck distances of the pigeons relative to the centre of rotation increased (r = 0.81, p< 0.0001) when the distance of the dot located closest to
the rotational centre increased. Individual median peck distances relative to the rotational centre in cm are depicted by individual symbols. Note that
pigeon 818 (diamonds) showed generally greater peck distances to the rotational centre than all other pigeons (multiple comparison test: p< 0.001).

doi:10.1371/journal.pone.0119919.g008
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sessions each including four catch trials. The catch trial stimuli were presented for 20 s or until
five pecks had occurred somewhere on the stimulus area.

After this first test series, the birds were specifically trained to peck only at the rotational
centre of the dot patterns and not at other fix points in the rotating dot pattern. The last

Fig 9. Dots close to the rotational centre of the dot pattern attracted the pigeons' pecks.Open circles depict the group mean peck distances relative to
the rotational centre in cm. Filled circles depict the group mean peck distances in cm relative to the dot closest to the pattern's rotational centre. The peck
distances were compared by a paired t-test for each dot distance category (* p< 0.05). Note that at a dot distance of 0 cm from the pattern's rotational centre,
the peck distances are equal (eq.) by definition. Error bars indicate standard errors.

doi:10.1371/journal.pone.0119919.g009

Fig 10. All but one pigeon significantly preferred to peck at a stationary dot that was additionally introduced into the rotating dot pattern (a). After
specific training to ignore eccentric stationary dots, all of the pigeons significantly preferred pecking in the rotational centre over pecking at the
additional stationary dot (b). Bars depict the groupmean peck distances in cmwith standard errors; open circles represent the individual median
peck distances in cm. The group mean peck distances were compared by a paired t-test (* p< 0.05, *** p< 0.001).

doi:10.1371/journal.pone.0119919.g010
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training sessions consisted of patterns with no dot in the rotational centre but a varying num-
ber of alternative fix points occurring somewhere in the stimulus area. When the pigeons
reached performances between 90% and 100%, a second test series was performed: eight of the
same non-rewarded catch trials as in the first tests were randomly inserted into other training
sessions and each pigeon ran four sessions with eight catch trials each.

Contrary to all other experiments in our study, in this experiment, all catch trial pecks were
included in the individual analyses, resulting in 60 pecks per pigeon before training and 120
pecks after training.

Results and Discussion. During the first catch trial tests, the pigeons pecked significantly
closer to the extra stationary dot than to the centre of rotation (0.69 ± 0.33 cm vs. 2.27 ± 0.25
cm; paired t-test: t = 2.75, sd = 1.41, df = 5, p = 0.040; Fig. 10a). The individual peck distances
relative to the rotational centre depended significantly on the distance of the additional station-
ary dot from the rotational centre (SRH-test: H(fix point) = 138.55, df = 2, p< 0.001), but the
individual pigeons responded differently (SRH-test: H(pigeon) = 51.72, df = 5, p< 0.001 and
SRH-test: H(pigeon � fix point) = 51.28, df = 10, p< 0.001). Pigeon 818 pecked significantly
closer to the rotational centre than all other pigeons (least significant difference test: p< 0.001,
Fig. 10a), and it also pecked significantly closer to the rotational centre than to the centre of
mass of the dot pattern (1.09 ± 0.85 cm vs. 1.53 ± 1.16 cm (median ± interquartile range), Wil-
coxon test: signed rank = 213, z = -5.53, n = 64, p< 0.0001).

After specific training to ignore additional stationary dots in the rotating dot patterns, the
pecking response of the pigeons reversed. All pigeons learned to significantly prefer the rota-
tional centre over the additional stationary dot (1.05 ± 0.07 cm vs. 2.49 ± 0.10 cm; paired t-test:
t = -12.46, sd = 0.28, df = 5, p< 0.001; Fig. 10b) and the rotational centre over the centre of
mass of the dot pattern (1.05 ± 0.07 cm vs. 1.45 ± 0.09 cm; paired t-test: t = -10.41, sd = 0.10, df
= 5, p< 0.001). The peck distances relative to the rotational centre still varied between the pi-
geons (SRH-test: H(pigeon) = 46.06, df = 5, p< 0.001) but did not depend on the distance of
the extra stationary dot to the dot patterns’ rotational centre (SRH-test: H(fix point) = 4.29,
df = 2, p = 0.117).

These results reveal that, in the first test series, most pigeons were attracted by the additional
non-moving dot instead of by the rotational centre of the dot pattern. This implies a local
search strategy based on detailed features of the rotating dot pattern. This might be a result of
the learning history of the pigeons, which were initially trained to peck at a dot in the rotational
centre of the pattern, i.e. a non-moving dot. However, after specific training to ignore station-
ary dots except if it was in the dot patterns’ rotational centre, all pigeons were able to detect the
rotational fix point of the whole rotating pattern. They did not simply peck at stationary dots
anymore. This might indicate a shift from a local perceptual strategy towards a more
global strategy.

Previous studies have indicated that pigeons generally yield visual precedence for local cues
[31,35], despite of their general ability to also use global, configurational cues [38–40]. We
have shown that pigeons can be trained to change their search strategy and to ignore the local
cues such as a stationary dot that stands out of the rotating dot pattern. This finding is compa-
rable to a local-to-global strategy shift as found in other studies [39,40]. Troje and Aust [30]
trained pigeons to discriminate a left-facing from a right-facing biological motion light-dot fig-
ure and demonstrated that most pigeons relied on motion characteristics of single dots (local
cues) while a few of their birds adopted to a global analysis strategy. Thus, local vs. global per-
ception not only depends on task properties and learning history but also includes an individu-
al component [30].

From the results of our fifth experiment, however, we can unfortunately not determine the
exact perceptual strategy our pigeons shifted to after the specific training. They could either be
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detecting the overall coherent dot movement [28] or they could be categorising between veloci-
ties [42], since both would be generally applicable for detecting a rotational centre.

General Discussion
Our results reveal that homing pigeons can be trained to detect the rotational centre in a rotat-
ing dot pattern. They can do so by ignoring distractors like dot density, dots close to the centre,
and eccentric, stationary dots. But all of these distractors affect the perceptual choices of the an-
imal to some extent. Overall, most pigeons give visual precedence for local stimulus informa-
tion such as the movement characteristics of single dots in the rotating dot pattern. This visual
precedence for slowly or non-moving dots might have been favoured by the early training pro-
cedures. But after specific training, all pigeons were able to locate the centre of rotation even in
the presence of other stationary dots.

It is interesting that one individual (pigeon 818) was never distracted by slowly moving or
stationary dots at all. Pigeon 818 might have applied a global strategy from the start while
being less precise as the other pigeons in indicating the rotational centre. More complex and
thus time-consuming memory processing of global stimulus information as suggested by
Cavoto and Cook [31] could have reduced the precision in indicating the rotational centre in
this pigeon compared to the pigeons that just searched for a stationary dot.

Taken together, we can conclude from our experiments that pigeons can actually find the ro-
tational centre of a rotating dot pattern and do not just peck at particular dots in the pattern.
Both velocity categorisation by local stimulus cues as well as coherent movement detection based
on global information would be principally appropriate strategies to detect a rotational centre.

In experiment 3, we observed a strong velocity dependence of our pigeons on their ability to
locate the rotational centre. It is highly likely that the pigeons perceived our stimuli with their
frontal visual field since we presented the dot patterns directly in front of them on a computer
touch screen. The frontal visual field has a high visual acuity but a poor temporal resolution
and has probably particularly evolved for pecking food at the ground [55]. This mechanism of
visual processing with the frontal visual field supposedly favoured visual precedence for local
stimulus information in our experiments [31] and might also be an explanation for the strong
velocity dependence of the pigeons’ performances.

The ecological framework of our conditioning study originated from celestial compass ori-
entation in migratory birds, and we propose that the centre of celestial rotation in nature
should be detected mainly by the lateral visual field of birds which presumably has evolved for
predator detection and flight control and is also more sensitive to motion detection [55–57].
Information from the lateral visual field is known to be processed within the thalamofugal visu-
al pathway in pigeons [58] and zebra finches [59], and it is interesting that the thalamofugal vi-
sual pathway is already known to process magnetic compass information in European robins
and garden warblers [4,60–63]. In some birds of prey, however, the Wulst is more concerned
with the frontal field [64]. At present it is not known if lateral field representation and magnetic
compass processing overlaps within the Wulst in night-migratory songbirds.

From the literature, it seems that the slowest velocities that visual neurons can still resolve
range between 0.5 to 5 degrees of visual angle per second. This was measured in electrophysical
recordings from the accessory optic system (AOS [65,66]; see [28] for summary). In contrast,
the very slow celestial rotation is about 0.0042 degrees per second. This, together with the
strong velocity dependence we observed in our experiments either implies the involvement of a
different visual brain pathway than the AOS and/or makes it rather unlikely that birds perceive
the celestial movement per se. For detecting the centre of celestial rotation, we propose a move-
ment independent "snapshot strategy" instead. Since stars near the centre of celestial rotation
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move along smaller arcs than stars located further away, birds could, at one time, observe the
star pattern relative to a stationary reference cue, which could be any landmark, and could
compare it with the geometric constellation of the stars to the same reference at later times. In-
tegrated over time, birds could then derive the centre of celestial rotation. Considering birds'
apparent cognitive precedence for local information [31] and the importance of objects near
the rotational centre revealed in our experiments, we suggest that stars or star patterns in the
circumpolar region and/or the stationary Polar Star itself could be more important to young
migratory birds, when they acquire their star compass, no matter how their exact perceptual
strategy works. This idea is supported by the early behavioural experiments of Emlen [18].

The “snapshot strategy” would require the ability to recognise and to mentally rotate objects
or patterns. Indeed, pigeons are able to compare rotated objects [67–70] and to recognise ob-
jects when they are presented in an unusual view [71]. Pigeons can even recognise rotated ob-
jects in a more efficient way than humans [72–74] and can also perform mental rotation [75].
Mental completion of geometric shapes [76] and objects [77] could facilitate star pattern com-
parison when parts of the pattern disappeared behind the horizon or clouds. Furthermore,
Wallraff [78,79] showed in his classical conditioning experiments that mallards (Anas platyr-
hynchos) can recognise star patterns projected upon a planetarium sky independently from
view, time of day and season. All these findings imply that birds should generally possess the
cognitive prerequisites to perform the “snapshot strategy”.

To sum up, our experiments show that pigeons can learn the principle of finding the rota-
tional centre of an arbitrary rotating dot pattern in an operant conditioning task. We further
show that pigeons can be trained to abandon a local perceptual strategy they had initially been
rewarded for and that they seem to be able to shift their attention to global rotational cues.

Supporting Information
S1 Table. Complete raw pecking data of all individual pigeons for each experiment. Listed
are the individual peck distances in cm relative to the location of the centre of rotation and rela-
tive to the corrected location of the centre of mass of the given dot stimulus where it was locat-
ed 300 ms before the analysed peck occurred (see method section). For experiment 1b which
used large 40 x 40 cm stimuli, the individual peck distances in cm relative to the screen centre
are listed. Note that although the physical dimensions of the screen were 30.4 x 22.8 cm, the pi-
geons only had access to an area of 23.6 x 20 cm (see method section) which was not exactly
centred. Therefore, the location of the "screen centre" in experiment 1b was defined as the cen-
tre of the accessible part of the screen relative to the left/bottom edge of the screen which was
defined as 0/0. Additionally, individual peck distances in cm relative to specific features of the
given stimulus such as the largest dot cluster in experiment 2, the most central dot to the rota-
tional centre in experiment 4 or the additional stationary dot in experiment 5 are listed. Fur-
thermore, the coordinates in cm of individual pecks, the coordinates in cm of the centre of
rotation and of the centre of mass, and the coordinates in cm of other analysed pattern charac-
teristics relative to the left/bottom edge of the screen (0/0) are given. For experiment 2 also the
peck orientation angles in degrees relative to where the largest dot cluster was located 300 ms
before the peck had occurred are listed.
(XLSX)
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