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Abstract

Migratory birds can navigate over tens of thousands of kilometers with an ac-
curacy unobtainable for human navigators. To do so, they use their brains. In
this review, we address how birds sense navigation- and orientation-relevant
cues and where in their brains each individual cue is processed. When little
is currently known, we make educated predictions as to which brain re-
gions could be involved. We ask where and how multisensory navigational
information is integrated and suggest that the hippocampus could interact
with structures that represent maps and compass information to compute
and constantly control navigational goals and directions. We also suggest
that the caudolateral nidopallium could be involved in weighing conflicting
pieces of information against each other, making decisions, and helping the
animal respond to unexpected situations. Considering the gaps in current
knowledge, some of our suggestions may be wrong. However, our main aim
is to stimulate further research in this fascinating field.
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INTRODUCTION

Birds embark on impressive migratory journeys that can cover thousands of kilometers. To find
their way, birds need to sense and integrate information from a large number of cues in their
environment.

Most long-distance navigation tasks consist of at least three different phases. The first phase
involves long-distance orientation (the typical range in birds is more than ∼200 km from the final
goal), which must be based on global cues (such as celestial and/or geomagnetic information).
Compass orientation is often important during this phase, which brings the birds into the homing
range of their final goal (1). The second phase is a narrowing-in phase (the typical range in birds
is ∼1–200 km from the final goal), in which migratory birds are faced with a task similar to that of
homing pigeons in release experiments. During this stage, a variety of learned local gradient maps
probably relying on information from all available senses and cues are important (1). The third
phase involves pinpointing the exact goal (the typical range in birds is less than ∼1 km from the
final goal), most likely on the basis of local landmarks such as specific trees that the birds could
use to locate their nest sites (1). Very different cues are likely to be used during the three phases,
and it is naı̈ve to believe that a single sense or cue is used exclusively throughout. Birds integrating
all available information from all potentially relevant orientation cues will have an evolutionary
advantage over birds using only a single source of information.

Consequently, when a bird migrates, it has to integrate and weigh orientation-relevant infor-
mation from all senses in its brain because it can fly in only one direction at any given point in
time. In the present review, we first present, cue by cue, how birds can sense navigation- and
orientation-relevant cues and where in the brain they are processed. Because, in many cases, little
is certain, we combine neuroanatomical and behavioral information available from various birds
and other vertebrates to make educated predictions as to which parts of a bird’s brain could be
involved. The aim is to stimulate future research in this fascinating field.

LONG-DISTANCE ORIENTATION IN YOUNG BIRDS DURING
THEIR FIRST AUTUMN MIGRATORY JOURNEY:
CLOCK-AND-COMPASS ORIENTATION

Young birds on their first autumn migration use a simple clock-and-compass strategy (also termed
the calendar-and-compass strategy or the vector navigation strategy) to locate their wintering
grounds (2–7). Their navigational systems do not involve any map-based feedback but instead
work as follows: The birds fly in direction A for X days and then fly in direction B for Y days
(although they can deviate from this strategy in some emergency situations, for instance, when
they find themselves over water at dawn; see References 6 and 8). The clock-and-compass strategy
requires only an inherited migratory direction, a circannual clock, and at least one compass.

Night-migratory songbirds are born with an inherited migratory direction (3, 9) and an annual
time schedule (10). Night-migratory songbirds also possess or develop at least three different
compasses prior to their first migratory journey: a sun compass (11, 12), a star compass (13,
14), and a magnetic compass (15–17). Young birds can find their migratory direction as long as
information from at least one of these compasses is present (7, 18). Thus, young migrants have
all the prerequisites required for performing calendar-and-compass orientation, but which parts
of the brain are used to process the relevant information?

Circadian and Circannual Clock Information

Birds have endogenous circadian and circannual clocks (10). The circadian clock is directly involved
in the sun compass, which requires time-of-day compensation (11, 12). The circannual clock is
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essential for timing of migration and ensures that the birds know when to fly north and when to
fly south (10). The existence of a circannual clock in migratory songbirds was shown in a classical
experiment in which a group of garden warblers (Sylvia borin) was kept in a constant-daily-light
regime at constant temperature and was given the same food throughout the year (10). Even with
no access to external timekeepers, the birds retained their annual cycle periodicity. They showed
migratory restlessness (Zugunruhe) only in spring and autumn, they grew their gonads in early
spring, and they moulted and fattened up at the appropriate times (10).

The physiological basis of the circannual clock is not well understood. Several aspects of
seasonality, such as migratory restlessness, are closely associated with season-specific changes in
melatonin secretion (19). Melatonin also plays a key role in the circadian clock, and circadian
rhythms and circannual cycles are likely to be closely linked (20).

The circadian clock in birds is much better understood than the circannual clock mostly because
one cycle takes 1 day instead of 365 days and is thus much easier to study. The circadian clock
is based on an ∼24-h cyclic transcriptional feedback loop involving several proteins, including
CRY1, CRY2, PER2, PER3, CLOCK, and BMAL1 (20, 21). In the wild, this transcriptional loop
is entrained by the natural light-dark cycle through photoreceptor molecules in the retina, the
pineal gland, and perhaps other brain regions (20–22).

The central clock of birds is most likely located in one or two hypothalamic brain nuclei: the
medial suprachiasmatic nucleus (mSCN) and/or the visual suprachiasmatic nucleus (vSCN) (23,
24). These nuclei are anatomically and physiologically similar to the mammalian suprachiasmatic
nucleus (SCN), and lesions of mSCN and/or vSCN resulted in disrupted circadian rhythms in
several bird species (25–27). Similar to the mammalian SCN, the bird SCN is active during
subjective day and excretes norepinephrine, which inhibits biosynthesis of melatonin in the pineal
gland (20, 21). In both mammals and birds, melatonin secretion from the pineal gland into the
bloodstream at night inhibits SCN activity (20, 21), and melatonin and norepinephrine also affect
peripheral clocks elsewhere in the organism (20).

In mammals, circadian activity in the ventral subcompartment of the SCN synchronizes al-
most immediately to a time-shift, whereas the dorsal SCN shell lags behind (28, 29). If a similar
phenomenon occurred in birds, it could, in theory, help birds determine east-west position after
displacement on the basis of jetlag effects. However, migratory reed warblers, which compensated
for a real 1,000-km eastward displacement (30), did not compensate for an identical simulated
time-shift (31). Thus, jetlag effects are unlikely to be the main cue used by these birds to com-
pensate for east-west displacements. To sum up, circadian and possibly circannual input into the
birds’ navigation system is probably based mainly on hormonal changes rather than on anatomical
connections.

Celestial Compass Information

Many birds can use two celestial compasses: a sun compass and a star compass. However, to be
functional, these compasses require learning during the premigratory period. Night-migratory
songbirds are born with the information to look for rotating light dots in the sky and to interpret
the center of rotation as north (13, 14, 32). Subsequently, they learn the geometry of the stars
relative to the center of rotation so that, during migration, they no longer need to observe the
rotation to detect stellar north (13, 14, 32, 33). To establish a sun compass, young birds must
observe the path of the sun and must link the sun’s positions to their circadian clock (12, 34).

Traditionally, the sun azimuth compass and the star compass are considered to be different.
However, in both of these compasses, the axis of celestial rotation seems to be crucial, and hand-
raised birds seem to be able to calibrate their magnetic compass by observing either the daytime
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sky on which the sun and the polarized light patterns rotate (35, 36) or the nighttime sky on which
the stars rotate (13, 37). Therefore, the sun and star compasses may be parts of a single celestial
compass system in birds (38).

Celestial cues are detected by the birds’ eyes and are processed in visual brain pathways. For the
sun compass, observation of celestial movement must be integrated with circadian information. To
directly perceive celestial movement, birds must detect velocities of 0.0042◦/s. Some visual neurons
in pigeons are indeed able to process very slow movements, but their lower sensitivity threshold is
approximately 0.25◦/s (39). These neurons were found in the nucleus of the basal optic root, a key
structure of the accessory optic system that, together with the pretectum, contains neurons that
respond specifically to the movement of large areas of the total visual field. The accessory optic
system analyzes self-motion, not object motion (40). Neurons in the tectofugal visual pathway of
pigeons participate in the analysis of object motion, but they prefer much higher velocities of 10–
90◦/s (40). Thus, there is presently no evidence that birds can process the extremely low velocities
of celestial motion. Indeed, Alert et al. (38) tested pigeons with slowly rotating dot patterns and
suggested that they were unable to detect the rotational center at velocities of less than 5.6◦/s.
Therefore, birds are unlikely to directly see celestial movement. But how then do they perceive
stellar rotation?

A snapshot strategy could also detect the center of celestial rotation (38). The celestial compass
could work by comparing the current star pattern with a memorized snapshot of the pattern from
some prior time relative to fixed local landmarks. There is indeed strong evidence for the ability
of pigeons to form snapshot memories; they can store stable panoramic views and subsequently
use these memories for spatial orientation (41).

Yang et al. (42) reported that some neurons in the dorsal lateral geniculate nucleus (GLd) of
pigeons are activated by low luminances of ≤1 lx. These cells could contribute to the perception
of the starry night sky. Budzynski & Bingman (43) suggested that, in pigeons, left-sided Wulst
lesions interfere with discrimination of distant landmarks. Kahn & Bingman (44) suggested that the
pigeon hippocampus integrates visual features of the surroundings with spatial information to then
construct navigational goals. Furthermore, lesions of the right hippocampus in pigeons interfere
with learning the sun compass, but once this compass is learned, mainly the left hippocampus
seems involved in using it (45).

If the celestial compass is based on a snapshot memory mechanism, we consider the following
pathway most likely: Ascending visual pathways like the thalamofugal system and/or the tectofu-
gal system plus their associative areas could represent and store the necessary visual information
in a somewhat lateralized manner. In mammals, storage of visual patterns is often enabled in
associative visual areas, and not in primary visual areas. If the same applied to birds, associative
structures like the nidopallium frontolaterale (NFL), the nidopallium intermedium laterale (NIL),
and the mesopallium ventrolaterale (MVL) could be crucial entities. It is possible that the asym-
metry within the visual system is transposed onto hippocampal circuits without the hippocampus
itself being lateralized (46). The hippocampal complex could also store and then retrieve this vi-
sual information for use in navigation (see Figure 1). The hippocampus and the area corticoidea
dorsolateralis (CDL), which serves as an entry port to the hippocampus, have reciprocal connec-
tions to visual areas. Thus, memorized visual patterns within the visual system and within the
hippocampal complex could be in constant exchange.

Magnetic Compass Information

The magnetic compass of migratory birds was discovered in European robins, Erithacus rubecula
(15). It is an inclination compass (16, 47), which detects the angle between the magnetic field lines
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Figure 1
Schematic drawing of suggested celestial compass–processing pathways in the bird brain. The tectofugal
visual pathway (eye > optic tectum > Rt > entopallium) and the thalamofugal visual pathway (eye > GLd >

visual Wulst) are shown. Shown neuronal connectivities are summarized in References 143, 150, and 151.
Abbreviations: CDL, area corticoidea dorsolateralis; Ei, entopallium internum; Ep, entopallial belt; GLd,
dorsal lateral geniculate nucleus; HA, hyperpallium apicale; HD, hyperpallium densocellulare; HI,
hyperpallium intercalatum; IHA, interstitial nucleus of HA; MVL, mesopallium ventrolaterale; NFL,
nidopallium frontolaterale; NIL, nidopallium intermedium laterale; Rt, nucleus rotundus.

and the Earth’s surface or gravity, but not the polarity of the magnetic field lines. Consequently,
birds do not distinguish between north and south but rather distinguish between poleward and
equatorward (47). The ability to sense magnetic fields is inherited, but at least in some birds, their
magnetic compass needs to be calibrated from celestial cues to become functional (13, 35, 37, 48).

How do birds sense the Earth’s magnetic field, and where in the brain is magnetic compass
information processed? From a behavioral perspective, at least some birds seem to use stereo-
typic head scans to sense the Earth’s magnetic field (49). From a biophysical perspective, sens-
ing magnetic fields as weak as that of the Earth by using biologically available materials is not
easy (50). At the present time, only two magnetosensory principles are thought to be physically
viable in terrestrial animals (51): iron mineral–based magnetoreception and radical pair–based
magnetoreception.

Compass needle–like structures based on the iron mineral magnetite are found in magnetotactic
bacteria (52). These structures are often referred to as magnetosomes (52). Similar structures have
repeatedly been suggested as the basis for avian magnetoreception (53) but have not convincingly
been located within bird tissues. Other iron mineral–based structures located in the upper beaks
of birds were long thought to be putative magnetic field sensors (54, 55), but these structures
were recently shown to almost certainly be nonsensory (56–58). Thus, at present, no potentially
magnetosensory iron mineral structures associated with nerve tissue and found at a consistent
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location within many individuals of the same species have been discovered. Even though these
two central requirements have not been satisfied, we cannot eliminate the possibility that iron
mineral–based magnetoreceptive structures exist in birds.

In contrast, the second hypothesis—namely that the magnetic compass is based on a light-
dependent, radical pair–based, chemical compass mechanism (50, 59–63)—has gathered significant
experimental support. The primary sensory molecules are most likely a cryptochrome protein (60,
64–68), but which parts of a bird’s brain process magnetic compass information?

If the avian magnetic compass is light dependent, the primary sensors should be in the pineal
gland or in the eyes. Because birds with removed pineal glands can still use their magnetic compass
(69), the primary sensors are almost certainly located in the retina. Retinal neurons in both eyes
contain at least four different cryptochromes [CRY1a, CRY1b, CRY2, and CRY4 (67)]. Further-
more, retinal ganglion cells in both eyes (64) and a forebrain area named Cluster N are by far the
most active parts of the brain when night-migratory songbirds use magnetic compass information
for orientation behavior (70–72). Cluster N is inactivated when the eyes are covered (70, 71, 73),
and neuronal tracing showed that Cluster N is a small part of the visual Wulst, which receives
its input from the eyes via the thalamofugal visual pathway [eyes → GLd → Cluster N (74)].
When Cluster N is surgically inactivated, night-migratory songbirds cannot use their magnetic
compass, whereas their sun and star compasses remain functional (72). Because Cluster N is part
of the thalamofugal visual pathway, this finding is strong evidence that the magnetic compass is
light dependent, that the primary sensors must be in the eyes, and that birds perceive magnetic
compass information as a visual impression (62). In a day- and night-migratory songbird, Cluster
N is active only at night, and it may therefore be specialized for magnetoreception under low-light
conditions, when it would not compete with, e.g., color vision (75).

Despite early claims to the contrary (76), the tectofugal visual pathway is almost certainly
not involved in magnetoreception (62, 77–79). Thus, the first stations in the pathway process-
ing light-dependent magnetic compass information in night-migratory songbirds are known (see
Figure 2).

In addition to magnetic information, an inclination compass needs input from gravity sensors,
which suggests that input from the vestibular system is involved. Wu & Dickman (80) reported
magnetic field–triggered neuronal activation in the vestibular brain stem complex of pigeons. This
activation disappeared after ablation of the lagena nerve (80). Furthermore, electrophysiological
recordings suggested that there are magnetic field direction–sensitive cells in the same brain
regions in pigeons (81). However, if there are magnetic sensors in the lagena, they are unlikely
to provide magnetic compass information in night-migratory songbirds, because in Zapka et al.
(72), the Cluster N–lesioned birds that could not use their magnetic compass had intact lagenas
and lagena nerves.

Even if magnetic compass information is not sensed in the lagena, vestibular information still
needs to be integrated with magnetic information in the brain. Such integration could take place
in the hippocampus, which probably receives directional magnetic field line information from
Cluster N (see Figure 5 below) (82) and gravity information from the posterior thalamic nuclei
(83). The posterior thalamic nuclei receive input from the vestibular sensory hindbrain complex
(84, 85), which contains tilt-sensitive neurons (86).

LONG-DISTANCE NAVIGATION IN EXPERIENCED BIRDS:
MAP-BASED NAVIGATION

Breeding and wintering site fidelities are as high as the survival rates in many migratory bird
species (6). Thus, experienced birds achieve a precision of a few meters over a distance of more
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GLd

Eye

HA

Cluster N IHA

HD
HI

Figure 2
Schematic drawing of the suggested magnetic compass–processing pathway in the bird brain. Abbreviations:
GLd, dorsal lateral geniculate nucleus; HA, hyperpallium apicale; HD, hyperpallium densocellulare;
HI, hyperpallium intercalatum; IHA, interstitial nucleus of HA.

than 5,000 km. Such precision is not possible with a simple clock-and-compass strategy. Maps must
have become part of the navigational system of experienced birds. The existence of experience-
based maps has been demonstrated through displacement experiments: Whereas juvenile migrants
are generally unable to correct for displacements (2, 4, 6, 7), experienced migrants can correct for
displacements to unknown locations from their first spring onward (2, 30, 87, 88). Which cues are
used in this map?

Map cues are highly multisensory and change during different stages of a long-distance nav-
igation task (see Introduction, above). Map cues almost certainly include olfactory cues (89–91),
landmarks (92), celestial cues (14), and geomagnetic cues (88, 93). We expect that most birds will
use all these cues in concert. Which cues are most reliable will vary regionally, and thus their
relative importance is also expected to vary (1).

Magnetic Map Information

The use of magnetically based maps has been reported in various bird species, but the existence, and
the spatial accuracy, of maps is still heavily debated. Although some researchers studying pigeon
homing consider homing pigeons using a magnetic map with a precision of a few kilometers to
be a proven fact, others have boldly stated that the magnetic map in pigeons is nothing but “an
evergreen phantom,” i.e., nonexisting (47, 51, 94). If a detailed magnetic map exists, it remains a
challenge to understand how a magnetic field–based map should be able to function on a scale of a
few kilometers, because magnetic intensity and inclination vary only ∼3 nT/km and ∼0.009◦/km
in a background field of approximately 50,000 nT, in addition to which rather stochastic, daily
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variability of 30–1,000 nT in random directions occurs (51). It is, however, easy to imagine that a
magnetic map or signpost sense could function on a much larger spatial scale, and some songbirds
seem to use magnetic cues at least as an approximate geographic signpost (88, 95). Very recently, a
virtual magnetic displacement experiment finally unequivocally demonstrated that a long-distance
migratory songbird can use a magnetic map for navigation (96).

It was long suggested that iron mineral–based structures in the upper beaks of birds might
function as magnetic map information sensors (54, 55). These structures were claimed to be located
in sensory nerve endings (dendrites) in the subepidermis at six specific spots along the lateral edges
of the upper beak in a strictly bilateral symmetry. However, these findings (54, 55) were seriously
challenged by a highly laborious study on >200 pigeons in which the previously described iron-
containing structures were found to be macrophages rather than magnetosensitive neurons (56,
57). Mouritsen (58) independently confirmed that the structures described by Treiber et al. (56,
57) included the structures described by Falkenberg et al. (55). However, technical limitations
of the Prussian blue staining method used mean that other iron mineral–based magnetic sensors
could have remained undetected (58).

Despite the controversy on the sensor level, a growing body of evidence suggests an involvement
of the ophthalmic branch of the trigeminal nerve (V1)—the only nonolfactory nerve entering
the upper beak—in magnetoreception. Several studies using surgical ablation of V1 reported
significant effects on birds’ abilities to detect magnetic field changes (97) and found a significant
decrease in magnetically induced neural responses in trigemino-recipient hindbrain structures
after V1 ablation (77, 78). Thus, V1 does seem to carry magnetic information, even though the
primary sensors remain unknown. In the present review, we consider only actual cutting of V1 as
convincing evidence for the relevance of V1 in specific tasks (for our reasoning, see Reference 62).

The magnetic information carried by V1 is unlikely to provide compass information, because
intact trigeminal nerves are neither necessary nor sufficient for magnetic compass orientation
(72, 98). In contrast, V1 most likely carries positional magnetic information to the brain because
migratory reed warblers can compensate for a 1,000-km displacement only if V1 remains intact
(88) and because strong magnetic pulses thought to remagnetize any iron-containing sensors led
to deflected orientation in adult but not juvenile migratory birds (7, 99).

In which parts of the brain is V1-associated magnetic information processed? V1 passes the
trigeminal ganglion to terminate in the principal (PrV) and spinal sensory (SpV) nuclei of the
trigeminal nerve (100). Magnetic field stimulations in European robins and pigeons strongly
activated medial parts of the SpV as well as a crescent-shaped region ventral to the PrV (PrVv)
(77, 78). This activation significantly dropped both when V1 was cut and when the ambient
magnetic field was compensated (77, 78). Thus, the SpV and PrVv are very likely to be involved
in magnetoreception.

The SpV receives topographically ordered afferents from all branches of the trigeminal nerve
(100). In the mallard duck, the SpV shows bilateral intratrigeminal projections within the SpV
and to the PrVv and prominent ipsilateral projections into various cerebellar lobes (101).

The only known projection of the PrV to higher brain centers is a direct connection to the
nucleus basalis (NB), which is located in the rostrocaudal telencephalon, via the quintofrontal
tract (102, 103). However, whether the PrVv also projects to the NB is unclear. Moreover, it
is difficult to demonstrate whether the NB is involved in magnetoreception, because it does not
express any known neuronal activity–dependent immediate early genes such as Egr-1 or c-fos and
electrophysiological studies related to magnetoreception are tricky.

The NB projects, probably via multisynaptic connections through the NB shell, to the trigem-
inal part of the nidopallium frontale (NFT) (102, 103). The NFT shows ample projections
terminating in various other forebrain regions, such as arcopallial substructures as well as the
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NB

NFT

PrVd

PrVv

SpV

Trigeminal nerve

Figure 3
Schematic drawing of the suggested magnetic map information–processing pathway in the bird brain.
Abbreviations: NB, nucleus basalis; NFT, trigeminal part of the nidopallium frontale; PrVd, principal
sensory nucleus of the trigeminal nerve, dorsal part; PrVv, principal sensory nucleus of the trigeminal nerve,
ventral part; SpV, spinal sensory nucleus of the trigeminal nerve.

caudolateral nidopallium (NCL) (102, 104). Input from the lagena may also be involved in sensing
magnetic map information (80, 81). We currently consider the pathway illustrated in Figure 3 to
be the most likely brain circuit for the processing of magnetic map information.

Olfactory Map Information

The role of olfactory cues in navigational maps has been extensively studied in homing pigeons.
For instance, pigeons home toward a wrong direction when they cannot smell at the actual release
site but sense the olfactory information from a previous mock release area (105). Similarly, fans
blowing artificial odors from specific directions strongly affect the homing directions of pigeons
(106). Olfactory cues also play an important role in experienced pelagic birds, which breed on
small oceanic islands and have huge homing ranges over the open ocean. For instance, Cory’s
shearwaters displaced by 800 km were disoriented when deprived of their sense of smell, but not
when magnetically disturbed (91). However, an odor-based map is most likely not a coordinate
map in pigeons but a gradient map providing information only about the direction of displacement
(107). Such a map may be based on detecting location-specific ratios of some key odors. Indeed,
Wallraff & Andreae (108) repeatedly collected samples of air from a large number of sites within
200 km of a pigeon loft and discovered that the ratios, but not the absolute concentrations, of several
volatile organic compounds provide fairly stable spatial gradients in the atmosphere. Simulation
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experiments suggested that these stable ratios and gradients provide sufficient information for
successful homing (108).

The olfactory pathways in the bird brain are well known. Receptor cells in the olfactory epithe-
lium in the nose cavities sense olfactory information. Their axons constitute the olfactory nerves,
which terminate ipsilaterally in the olfactory bulbs (OBs). The OBs project bilaterally onto a
wide array of structures that include the piriform cortex (CPi), the prepiriform cortex (CPP), the
hyperpallium densocellulare (HD), parts of the amygdala, and components of perihippocampal
structures. The CPi and CPP further interact with parts of the visual system, with the prefrontal
NCL, and with additional limbic structures. Thus, the CPi and the associated CPP are dominated
by olfactory fibers but also interact with hippocampal, limbic, executive, and visual areas (109, 110).

The relevance of smell for navigation is possibly reflected in the neuroanatomy of birds. OBs
of homing pigeons seem to be enlarged compared with OBs of nonhoming pigeon breeds (111).
OBs are also spectacularly enlarged in birds that use olfactory cues for navigation and foraging,
such as seabirds (89). Manipulations of the olfactory system, such as plugging the nostrils (112),
anaesthetizing the olfactory mucosa (113), transecting the olfactory nerve (90, 114), and ablating
the CPi (115), generate remarkable and lateralized disruptions of initial orientation and homing
performance in pigeons (107).

Patzke et al. (116) used immediate early genes to compare the brain activation patterns in three
groups of pigeons: birds released at an unfamiliar site, birds transported and kept at the same site
but not released, and birds released near their loft. The highest numbers of Erg1-positive neurons
were found in the CPi of pigeons released at the unfamiliar location. Many Erg1-positive neurons
were also found in the birds kept at the release site. Birds released in the vicinity of their loft
showed no significant increase in CPi activation. These results implicate the CPi of pigeons in the
processing of olfactory map cues and indicate that navigation is a multisensory process whereby
familiar visual landmarks become more relevant than olfactory cues close to the goal.

In summary, we consider the following pathway to be most likely for processing of olfactory
map cues in the bird brain: The OB projects heavily onto the CPP and CPi. Both structures interact
with the hippocampal complex and transfer olfactory map information via these pathways so that
this information can be used for spatial orientation (117). Smaller projections also exist between
the OB and the visual HD. In addition, the HD also interacts with the CPP and CPi, thereby
possibly integrating visual landmark information and olfactory map information (see Figure 4).

Landmark Information

When pigeons learn to home toward their loft, their flight paths become less variable over time,
suggesting that they learn a maplike structure of the environment and use this structure for
piloting (92, 118). Individual pigeons may take different routes but often employ prominent visual
landmarks as orientation or turning points (92, 119, 120). This map of memorized places may be
associated with compass instructions but may also be sufficient in guiding the journey, at least for
some time. This last option may depend on the reliability of the memory storage of landmarks.

But how do birds use landmarks? Do birds orient by prominent objects, or are they able to
use the overall geometry of the surrounding landscape, which is accessible from a number of sites
within a given area? Studies in different avian species indicate that both kinds of cues are employed
but, depending on task conditions, to different extents (121, 122). Data from several avian species
suggest that the left hemisphere predominantly processes single landmarks, whereas the right
hemisphere predominantly processes geometric information (121–123).

Landmarks are visual objects used for navigation. They are therefore processed within the
visual system, stored in visual association areas, and then used by the hippocampal complex for
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OB

Hippocampus

CDL

CPP

CPi

HD

Figure 4
Schematic drawing of the suggested olfactory map information–processing pathway in the bird brain.
Abbreviations: CDL, corticoidea dorsolateralis; CPi, piriform cortex; CPP, prepiriform cortex;
HD, hyperpallium densocellulare; OB, olfactory bulb.

navigational computation. In essence, the relevant pathways may be identical to the ones discussed
above in the context of celestial compass processing (see Figure 1), but very little is known at
present.

Integration of Map Cues: The Role of the Hippocampus in Navigation

In every vertebrate class studied, the hippocampus has been found to play a critical role in spa-
tial memory and cognition, and birds have provided the most compelling evidence (124). Food-
caching birds can memorize hundreds of caches over many months (125), hippocampal volume
in food-storing bird species is higher than in related nonstoring species (125), and migratory sub-
species of white-crowned sparrows have more hippocampal neurons and larger hippocampi than
do nonmigratory populations (126).

The current evidence suggests that the bird hippocampus primarily supports learning and
utilization of maplike, spatial representations of familiar landmarks that can be used to guide
navigation over familiar space (127). Indeed, in pigeons, hippocampal lesions do not seem to affect
orientation from unfamiliar locations but primarily affect navigation around the home area when
previously learned landmarks are available (117). Memorized landmarks should also be relevant
for migrants in familiar areas and during the narrowing-in and pinpointing phases of long-distance
migration (see Introduction, above).

It is important to stress that birds can navigate for some time without an intact hippocampus
(128). However, hippocampal circuits become relevant when novel input necessitates corrective
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maneuvers, as shown in an elegant experiment in which GPS-tracked pigeons that were both
anosmic and clock shifted were released over familiar territory (117). Due to the clock shift, birds
usually started out in the wrong direction but later corrected their flight paths. Whereas control
animals quickly reoriented toward the loft, hippocampus-lesioned birds took longer to correct
and often neglected prominent landmarks such as the coastline (117).

Birds orient in space by using not only a single landmark but also the relative location of
several landmarks (geometry coding). Left and right hippocampi in pigeons seem to contribute
differently to single-landmark navigation and geometry-based navigation (129, 130). It is possible,
however, that this lateralization is transposed onto the hippocampus only by the asymmetry of
the visual system, in which the left hemisphere encodes primarily for single features, whereas the
right hemisphere excels in the analysis of feature relations (131). In addition, left, but not right,
hippocampal lesions in pigeons resulted in impaired navigational map- and sun compass–based
learning (45, 132).

Our understanding of the neurobiological substrates of very near space navigation (in lab-based
arenas) in mammals has undergone a revolution since head direction cells (133, 134) and place cells
(135) were found in the rat hippocampus and grid cells (136) were found in the entorhinal cortex of
the rat brain. The head direction cells in perihippocampal structures are anatomically the starting
point (134). Each of these neurons has a preferred angle of the animal’s head direction relative to
arena landmarks such that each neuron constitutes an individual compass of which the summed
activity vector points toward the direction of the animals’ heads. This compass information may
be fed into medial enthorinal grid cells, which fire at repeating activity spots that are arranged
on a hexagonal grid (136). The grid size seems to increase systematically from the dorsal to the
ventral parts of the dorsocaudal medial region of the entorhinal cortex (136). Grid cells may serve
functions that resemble an odometer or map. These findings raise some intriguing questions.
Do head direction cells relating to global cues such as magnetic and celestial compass directions
exist in any animal? Do grid cells scale up to kilometers or even thousands of kilometers when
animals explore much larger spaces in the wild? Recent work on bats has shown that grid and
head direction cells extend into three-dimensional spaces (137–139). Furthermore, grid cells can
stretch and compress when the environment is deformed, possibly due to input from border cells
in the subiculum (140). Is there evidence for the existence of these cell types in birds?

Presently, the answer is no. In the left hippocampi of pigeons, Siegel et al. (141) discovered
some cells that may represent a track toward a goal. However, no such cells are known in mammals.
The search for navigation-related neurons in the bird hippocampus is hampered by the difficulties
in comparing the hippocampi of mammals and birds. Although there is no serious dispute as to the
homology of the mammalian hippocampus and the avian hippocampus, putative homologies of
hippocampal and parahippocampal subfields remain unclear. The mammalian enthorinal cortex
likely corresponds to the avian dorsolateral hippocampus (142). Similarities and differences in other
subareas of the avian and mammalian hippocampi are less clear, making comparisons difficult. This
reality is especially true for the dentate gyrus, which may be a de novo structure that exists only
in mammals (124).

In conclusion, the neuronal mechanisms underlying long-distance spatial memory and cogni-
tion in birds are mostly unknown. However, given the obvious conceptual similarities between
place cells, grid cells, and head direction cells on the one hand and maps and compasses on the
other hand, might the same underlying set of mechanisms exist in birds and smoothly scale between
near and distant space?

Given the current knowledge, we suggest that magnetic compass information, celestial
compass information, visual landmark and geometry information, olfactory map information, and
magnetic map information have to reach the hippocampus. The path of the visual information to
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Vision/celestial compasses
Magnetic compass
Trigeminal magnetic map
Olfaction

HA

Cluster N

IHA

HD

HI

Hippocampus

CDL

NB

NFT

MD

OB

Ei
NFL

NIL

Ep

Figure 5
Pathways to the hippocampus that could store, integrate, and retrieve information about maps and
compasses. The different sensory streams—vision/celestial compasses, magnetic compass, trigeminal
magnetic map information, olfaction—are denoted by different colors. The shown neuronal connectivities
are summarized in Reference 143. Abbreviations: CDL, corticoidea dorsolateralis; Ei, entopallium internum;
Ep, entopallial belt; HA, hyperpallium apicale; HD, hyperpallium densocellulare; HI, hyperpallium
intercalatum; IHA, interstitial nucleus of the HA; MD, mesopallium dorsale; NB, nucleus basalis;
NFL, nidopallium frontolaterale; NFT, trigeminal part of the nidopallium frontale; NIL, nidopallium
intermedium laterale; OB, olfactory bulb.

the hippocampus is outlined above in the discussion of snapshot memories of the stellate compass.
We have no information on the projections from Cluster N that could transfer magnetic compass
information to the hippocampus, but such information may take a parallel route to the visual
output from the visual Wulst. If magnetic map information was processed in the trigeminal
pathway, it could enter the hippocampus via the projections of the NFT to the mesopallium
dorsale and then via the CDL to the hippocampus (82). Olfactory information directly reaches
the CDL but could also be transmitted via the CPi (Figure 5).

WHERE DOES ALL THIS INFORMATION COME TOGETHER
IN THE BIRD FOREBRAIN?

Birds need to integrate many sensory inputs carried by diverse ascending sensory brain pathways
in their forebrain to properly navigate over long distances. Where in the forebrain does all this
information come together?

One option is the NCL, which is a center of higher-order sensory integration. Sensory input
from the trigeminal, visual, and olfactory streams reach the NCL via a set of interconnected
pathways, which show considerable overlap in their respective termination fields (104). In addition,
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the NCL receives afferents from various limbic structures that could inform it about ongoing
motivational and emotional processes. Last but not least, the NCL is a convergence zone between
ascending sensory and descending motor pathways and, as such, projects to all motor output areas
(143). Could the NCL—in addition to its many other functions—be the navigational decision-
making center in the bird brain where data from all navigation-relevant cues are weighed against
each other and a decision is made to fly in a particular direction at any given moment in time?

Converging evidence from anatomical, electrophysiological, behavioral, and neurochemical
studies suggests that the NCL is a functional analog to the mammalian prefrontal cortex and is
thus firmly associated with the generation of executive functions (144). Executive functions are a
cluster of cognitive processes that describe the ability of an organism to spontaneously generate
efficient strategies when relying on self-directed, task-specific planning. Consequently, the NCL
participates in functions in which sensory input is categorized and connected to learned output
patterns, information is temporarily held for later action, response strategies are changed according
to new information, responses are selected relative to contextual cues, and goals are chosen on the
basis of their subjective value (145). Thus, the NCL may play a key role in navigation as a higher
cognitive structure that sets goals, selects appropriate actions, and alters intermediate strategies
when new and unexpected information becomes available.

Although all relevant sensory information seems to come together in the NCL (see Figure 6),
this does not mean that the master map and compass can be found there. As outlined above, the
NCL is involved in setting goals and in weighing evidence when conflicting stimuli are to be inte-
grated for a decision. The map as a position device may be represented in a distributed manner in
diverse sensory areas. The hippocampus has access to these multiple maps to compute navigational
directions on the basis of the absolute and relative locations of stimuli that provide positional in-
formation. When flying over known territory, birds have to integrate compass information with
the many maps. Again, it is unlikely that there is a compass area in the bird brain. It is more
likely that compass information resides in the sensory streams but that both the hippocampus and
the NCL interact with these sensory areas to perform two diverse tasks. First, the hippocampus
could interact with structures that represent maps and compass information to compute and con-
stantly control navigational goals and directions. Second, the NCL could be involved in weighing
conflicting evidence, in coming to a decision, and in helping the animal respond to unexpected
situations. When birds flying over unknown territory are relying only on compass information,
the NCL could integrate all bodily information on motivation, timing, hunger, and fatigue to
organize the moment-to-moment decisions of a journey.

THE ORGANIZATION OF MOTOR OUTPUT

Once a bird’s brain has decided which way the bird should fly, it must send this signal to the motor
output systems. Like mammals, birds have two different descending systems for motor control.
The first consists of fibers from the pallial areas that descend to the brain stem and the spinal cord.
The second is the diverse subpallial system, in which the somatomotor basal ganglia pathways are
especially relevant for motor actions. We outline both systems here (see Figure 7).

The first system is the tractus occipitomesencephalicus (TOM), which originates in the arco-
pallium intermedium (AI) and descends through the thalamus and the dorsolateral tegmentum
(146). The TOM likely plays a key role in all aspects of motor control that involve manipula-
tions with the beak (103). The other system is the tractus septomesencephalicus (TSM), which
originates in the hyperpallium apicale (HA) and descends with various terminations along its path
through the ventral brain stem to the cervical spinal cord, where it synapses predominantly in
the medial part of the dorsal horn of the upper seven cervical segments (147). The TSM thus
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NB

NFT

Hippocampus

Entopallium

NCL

CPi
Arco

Motor output

Striatum

Vision/celestial compasses
Magnetic compass
Trigeminal magnetic map
Olfaction

Wulst

Cluster N

Figure 6
Schematic drawing of the navigation-relevant brain regions, all of which are connected to the NCL in the
bird brain. Sensory streams are color coded. The NCL interacts with the hippocampus and has direct access
to motor output pathways. The shown neuronal connectivities are summarized in Reference 143.
Abbreviations: Arco, arcopallium; CPi, piriform cortex; NB, nucleus basalis; NCL, caudolateral nidopallium;
NFT, trigeminal part of the nidopallium frontale.

resembles the mammalian pyramidal tract and may be especially relevant for flight-related motor
control (148).

Using behavioral molecular mapping, Feenders et al. (149) described a cluster of pallial areas
that are active during limb and body movements like flight and wing whirring. The activated
nidopallial and mesopallial areas may be motor clusters that are connected directly or via at most
one intermediate structure to the AI, the HA, and the NCL (see Figure 7). Thus, these areas
are linked to structures that control descending motor pathways (the AI and HA) or that modify
behavioral plans on the basis of new information (the NCL).

OUTLOOK

The anatomical connections within the avian brain and which sensory systems provide the inputs
to which brain areas are generally well understood (143). In comparison, our understanding of
the functional links between anatomy, specific sensory information, and orientation/navigation
decisions mostly trails behind.

To understand the specific circuits and cognitive processes responsible for the process-
ing of navigational information in birds, multidisciplinary approaches are needed. These ap-
proaches should combine (a) focal neuronal tracing; (b) cleverly designed behavioral paradigms;
(c) navigation-induced immediate early gene expression and/or electrophysiological studies; and
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Vision
Magnetic compass
Pallial motor

NCL

Arco
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Hippocampus

CDL

Striatum

Mesopallium

TSM

TOM

Entopallium

Nidopallium
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Motor

clusters

Figure 7
Schematic drawing of the motor output pathways of the bird brain. Neuronal streams are color coded
according to their origin. Shown neuronal connectivities are summarized in Reference 143. Abbreviations:
Arco, arcopallium; CDL, corticoidea dorsolateralis; NCL, caudolateral nidopallium; TOM, tractus
occipitomesencephalicus; TSM, tractus septomesencephalicus.

(d ) loss-of-function approaches targeting specific circuits and investigating the effects on behavior,
gene expression, and/or electrophysiology.

Furthermore, we urgently need bold experiments that attempt to bridge near space (lab arenas
and short-distance homing) and far space (flights covering hundreds or even thousands of kilo-
meters). For instance, do head direction cells, place cells, and grid cells exist in birds; can they be
related to global cues; and do they scale to kilometers or even thousands of kilometers?
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A
nn

u.
 R

ev
. P

hy
si

ol
. 2

01
6.

78
:1

33
-1

54
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

89
.2

45
.1

95
.1

53
 o

n 
02

/1
1/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



PH78CH07-Mouritsen ARI 21 December 2015 19:31

LITERATURE CITED

1. Frost B, Mouritsen H. 2006. The neural mechanisms of long distance animal navigation. Curr. Opin.
Neurobiol. 16:481–88

2. Perdeck AC. 1958. Two types of orientation in migrating Sturnus vulgaris and Fringilla coelebs as revealed
by displacement experiments. Ardea 46:1–37

3. Berthold P. 1991. Spatiotemporal programmes and genetics of orientation. In Orientation in Birds, ed. P
Berthold, pp. 86–105. Basel, Switz.: Birkhäuser
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A
nn

u.
 R

ev
. P

hy
si

ol
. 2

01
6.

78
:1

33
-1

54
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

89
.2

45
.1

95
.1

53
 o

n 
02

/1
1/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



PH78CH07-Mouritsen ARI 21 December 2015 19:31

108. Wallraff HG, Andreae MO. 2000. Spatial gradients in ratios of atmospheric trace gases: a study stimulated
by experiments on bird navigation. Tellus B 52:1138–57
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Henrik Mouritsen, Dominik Heyers, and Onur Güntürkün � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 133

vii

A
nn

u.
 R

ev
. P

hy
si

ol
. 2

01
6.

78
:1

33
-1

54
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

89
.2

45
.1

95
.1

53
 o

n 
02

/1
1/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



PH78-FrontMatter ARI 13 January 2016 14:25

ENDOCRINOLOGY, Holly A. Ingraham, Section Editor

Glucocorticoid Signaling: An Update from a Genomic Perspective
Maria A. Sacta, Yurii Chinenov, and Inez Rogatsky � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 155

Pathophysiology and Mechanisms of Nonalcoholic Fatty Liver Disease
Joel T. Haas, Sven Francque, and Bart Staels � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 181

The Role of PVH Circuits in Leptin Action and Energy Balance
Amy K. Sutton, Martin G. Myers Jr., and David P. Olson � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 207

Understanding the Physiology of FGF21
Ffolliott Martin Fisher and Eleftheria Maratos-Flier � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 223

GASTROINTESTINAL PHYSIOLOGY, Linda Samuelson, Section Editor

ADAM Proteases and Gastrointestinal Function
Jennifer C. Jones, Shelly Rustagi, and Peter J. Dempsey � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 243

Enteroendocrine Cells: Chemosensors in the Intestinal Epithelium
Fiona M. Gribble and Frank Reimann � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 277

Role of Intestinal HIF-2α in Health and Disease
Sadeesh K. Ramakrishnan and Yatrik M. Shah � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 301

NEUROPHYSIOLOGY, Roger Nicoll, Section Editor

Cortico–Basal Ganglia Circuit Function in Psychiatric Disease
Lisa A. Gunaydin and Anatol C. Kreitzer � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 327

Long-Term Potentiation: From CaMKII to AMPA Receptor
Trafficking
Bruce E. Herring and Roger A. Nicoll � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 351

RENAL AND ELECTROLYTE PHYSIOLOGY, Peter Aronson, Section Editor

Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1
Kinases
Juliette Hadchouel, David H. Ellison, and Gerardo Gamba � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 367

Regulation of Vascular and Renal Function by Metabolite Receptors
János Peti-Peterdi, Bellamkonda K. Kishore, and Jennifer L. Pluznick � � � � � � � � � � � � � � � � � � 391

Roles and Regulation of Renal K Channels
Paul A. Welling � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 415

Vascular Growth Factors and Glomerular Disease
Christina S. Bartlett, Marie Jeansson, and Susan E. Quaggin � � � � � � � � � � � � � � � � � � � � � � � � � � � 437

viii Contents

A
nn

u.
 R

ev
. P

hy
si

ol
. 2

01
6.

78
:1

33
-1

54
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

89
.2

45
.1

95
.1

53
 o

n 
02

/1
1/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



PH78-FrontMatter ARI 13 January 2016 14:25

RESPIRATORY PHYSIOLOGY, Augustine M.K. Choi, Section Editor

Ceramide Signaling and Metabolism in Pathophysiological States
of the Lung
Irina Petrache and Evgeny V. Berdyshev � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 463

The Microbiome and the Respiratory Tract
Robert P. Dickson, John R. Erb-Downward, Fernando J. Martinez,

and Gary B. Huffnagle � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 481

SPECIAL TOPIC: MITOCHONDRIA, David C. Clapham and Rosario Rizzuto,
Special Topic Editors

Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae
Remodeling as Key Mediators of Cellular Function
Lena Pernas and Luca Scorrano � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 505

Supramolecular Organization of Respiratory Complexes
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