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additional tissue-specifi c functions that 
go far beyond CJ formation. Altogether, 
MICOS has entered the center stage of 
mitochondrial research and is emerging 
as a critical hub in the regulatory 
network that controls mitochondrial 
functions and their adaptation to 
metabolic changes, cellular stress and 
developmental programs. 
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Both vertebrates and invertebrates show 
a multitude of left–right asymmetries of 
brains and behaviors1. For example, cats, 
dogs, and many other species have a 
preferred paw when handling food2. But 
why should humans and other animals 
have lateralized brains? Based on a large 
comparative approach1, it is likely that 
asymmetries serve several purposes. 
First, by specializing on one limb or 
one side of its sensory system, the 
contralateral hemisphere goes through 
life-long cycles of motor and perceptual 
learning, thereby increasing the speed 
of processing and motor effi cacy, 
decreasing reaction time, and enhancing 
discrimination ability. Second, by 
having two complementary, specialized 
hemispheres, neural processes are 
computed in parallel, thereby reducing 
cognitive redundancy1. For example, the 
right hemisphere excels in processing 
threat-related stimuli, providing the left 
visual fi eld an advantage in reacting to a 
predator approaching from the left3. Here, 
we report that two-thirds of cats prefer a 
leftward sleeping position, giving their left 
visual fi eld and thus their right brain half 
a privileged view of approaching animals 
without being obstructed by their own 
body. 

Sleep is one of the most vulnerable 
states for an animal, as anti-predator 
vigilance is drastically reduced, 
especially in deep sleeping phases. 
Domestic cats (Felis silvestris catus) 
are both predators and prey (e.g., for 
coyotes)4 and sleep an average of 
12–16 hours a day5. Therefore, they 
spend almost 60–65% of their lifetime 
in a highly vulnerable state. To reduce 
predation risks, cats prefer to rest in 
elevated positions so that predators are 

more visible to them and the cats, in 
turn, are more visually concealed from 
predators6. In such a spot, predators 
can access cats only from below. 
Thus, their preference for resting in an 
elevated position can provide comfort, 
safety, and a clear vantage point for 
monitoring their environments. We 
hypothesized that a lateralized sleeping 
position further increases the chances 
of quickly detecting predators (or to 
identify careless prey) when awoken. 

To address this question, we analyzed 
408 publicly available YouTube videos 
featuring a single cat in a clearly visible 
sleeping position while lying on one 
side, with an uninterrupted sleep 
duration of at least 10 seconds and 
full-body visibility from head to hind 
legs. Only original, unaltered videos 
were included, while low-resolution, 
obscured, duplicated, or modifi ed (e.g., 
mirrored/selfi e) videos were excluded 
(Supplemental information). Our results 
revealed a statistically signifi cant 
leftward bias at the population level 
(² = 37.7, df = 1, p < 0.001) with 
n = 266 cats (65.1%) showing a leftward 
sleeping position and n = 142 cats a 
rightward one (34.8%) (Figure 1). Thus, 
on average, about two-thirds of cats 
preferred to sleep on the left side of 
their body with their left shoulder down. 
This fi nding is not only interesting 
from the perspective that cats show 
a signifi cant population-level bias 
for the left side but also fi ts very well 
with previous fi ndings on functional 
specialization in the mammalian right 
hemisphere. The right hemisphere is 
dominant for threat processing, and in 
most species, animals react faster when 
a predator is approaching from the left 
side3. Moreover, the right hemisphere 
is dominant for spatial attention7 and 
the right amygdala in the processing 
of fear in response to a threat8. Upon 
awakening, a leftward sleeping position 
would provide a fast left visual fi eld view 
of objects that approach from below or 
from similarly elevated positions, thus 
allowing optimal conditions for fast 
processing of external stimuli in the right 
hemisphere of the brain. 

Obviously, other reasons for the 
lateralized sleeping pattern must also be 
considered. Pregnant cows lie on the left 
with an average of 56% probability, with 
the proportion increasing in later stages 
of pregnancy9. Non-pregnant animals 
show no such asymmetry9. Given the 
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way we collected the data, we obviously 
have no information about the sex or 
pregnancy status of the videotaped 
cats. Since even in pregnant cows this 
population asymmetry is low, it is not 
very likely that by chance we observed a 
majority of pregnant cats. ‘Pawedness’ 
could be a further factor that affects 
sleeping position. Indeed, about 78% of 
cats show either left- or right-sided paw 
preferences10. But since pawedness in 
cats displays an individual asymmetry 
with about equal numbers of left- and 
right-pawed cats, our population 
asymmetry in sleeping position of 65% 
is diffi cult to explain by paw preferences. 
Taken together, we are inclined to believe 
that the signifi cant leftward bias in 
sleeping position in cats may have been 
evolutionarily driven by hemispheric 
asymmetries of threat processing, but 

additional factors cannot be excluded. 
Although this fi nding is subject to 
debate, it could provide an excellent 
opportunity to study the emergence of 
asymmetries at the population level, 
while also helping us to learn more about 
the nature of one of our favorite pets. 
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Figure 1. Lateral bias in sleeping positions of domestic cats. 
About two-thirds of cats prefer to sleep on their left side. Pictures of cats from unsplash: left cat 
courtesy of Noah Dustin von Weissenfl uh (@noah_dustin), right cat courtesy of Gleb Kuzmenko 
(@badfantasy).
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