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Electrophysiological mismatch response recorded in awake
pigeons from the avian functional equivalent of the primary
auditory cortex
Ulrich Schalla,b,c, Bernhard W. Müllerd,e,f, Christian Kärgelf and
Onur Güntürküng

The neural response to occasional variations in acoustic
stimuli in a regular sequence of sounds generates an
N-methyl-D-aspartate receptor-modulated event-related
potential in primates and rodents in the primary auditory
cortex known as mismatch negativity (MMN). The current
study investigated MMN in pigeons (Columba livia L)
through intracranial recordings from Field L of the
caudomedial nidopallium, the avian functional equivalent of
the mammalian primary auditory cortex. Auditory evoked
field potentials were recorded from awake birds using a
low-frequency (800 Hz) and high-frequency (1400 Hz)
deviant auditory oddball procedure with deviant-as-
standard (flip-flop design) and multiple-standard control
conditions. An MMN-like field potential was recorded and
blocked with systemic 5mg/kg ketamine administration.
Our results are similar to human and rodent findings of an
MMN-like event-related potential in birds suggestive of
similar auditory sensory memory mechanisms in birds and
mammals that are homologue from a common ancestor

300 million years ago or resulted from convergent
evolution. NeuroReport 26:239–244 Copyright © 2015
Wolters Kluwer Health, Inc. All rights reserved.
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Introduction
The neural response to occasional variations in acoustic

stimuli in a regular sequence of sounds generates an

event-related potential (ERP) in the human brain known

as mismatch negativity (MMN). MMN is extracted as a

difference waveform by subtracting the ERP to frequent

regular or standard sounds from the ERP to infrequent

deviant sounds. Because of the lower probability of

deviant stimuli, however, the difference waveform is also

likely to include some changes in obligatory ERP com-

ponents, which reflect a physical stimulus difference and

neural refractoriness in afferent mechanisms [1].

The auditory cortex is the main source of MMN, with a

distributed network of secondary sources in temporal,

frontal and parietal regions [2]. MMN generation is not

reliant on active attention to the sound sequence and is

therefore often described as preattentive; however, it is

reliant on a memory record of the immediate history of

auditory information, a record that appears to have similar

sensory resolution to auditory perception [3].

A substantial body of research [4] indicates that the

memory system underlying MMN enables the brain to

process sounds with respect to a relevant acoustic context

and to automatically identify events that might be

behaviourally relevant, thereby prompting an attention

switch for further processing. This memory system is

considered as evidence of a ‘primitive intelligence’ in the

auditory system, which incorporates a model of the

acoustic context used to make perceptual inferences

about the nature of future sound events.

Although most MMN research to date has focussed on

humans when investigating the properties of the under-

lying auditory information processes, animal studies have

recently attracted increased attention [5–7]. Research on

animal models of human MMN appears to be largely

motivated by the robust and well-replicated finding of an

MMN reduction in schizophrenia [8], which is correlated

with a disease-specific brain pathology (i.e. grey matter

loss in the superior temporal, prefrontal and parietal

cortices and its progression during the course of illness)

and clinical outcomes [9].

Consistent with the ‘neurodevelopmental glutamate

hypofunction model’ of schizophrenia, pharmacological

studies have demonstrated that MMN is critically

dependent on the functional state of N-methyl-D-aspar-

tate (NMDA) glutamate receptors [10–13]. For instance,

NMDA receptor antagonists induce symptoms and cog-

nitive impairments in healthy individuals that resemble
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those of schizophrenia [12], whereas healthy individuals

with the smallest MMN develop more severe ‘psychotic’

reactions following administration of the glutamate

antagonist ketamine [13]. Conversely, agents that

enhance NMDA receptor function increase MMN

amplitude in schizophrenia [14].

Hence, MMN appears to be a unique psychophysiolo-

gical endophenotype of schizophrenia [15] that links

some of the defining psychopathologies and neuro-

pathologies of the disorder with NMDA receptor dys-

function [16]. To date, MMN animal models have mostly

include rodents. However, the developmental phases of

synapse formation and maturation in birds and humans

are relatively distinct, whereas in rats the maturation

phase occurs largely simultaneously with the synapse

formation phase [17]. In this respect, rodents are not the

best models when investigating neurodevelopmental

disorders such as schizophrenia. Birds, however, provide

a unique opportunity of experimental access to prenatal

aspects of brain development – that is, before hatching –

as opposed to accessing foetal rodent brains in uteri.

The current study aimed to identify intracranial MMN-

like ERPs from Field L of the caudomedial nidopallium

in the avian telencephalon [18], a brain structure con-

sidered highly comparable to the mammalian primary

auditory cortex with respect to afferent and efferent

connections, neurotransmitters, cytoarchitecture and

tonotopic organization [19]. To test the face validity, a

subanaesthetic ketamine challenge was used to attenuate

MMN-like field potentials [10].

Methods
Experiments were conducted with approval from the

Ruhr-University of Bochum animal research ethics com-

mittee. Five adult male pigeons (Columba livia L) of local

stock were used (430–510 g body weight). Each bird was

housed separately. Food and water were provided ad
libitum.

Surgery was performed under general urethane anaes-

thesia. Recording electrodes were implanted stereo-

tactically into Field L of the caudomedial nidopallium,

with the coordinates AP: + 6.0 mm, ML: + 2.0 mm and

DV: − 4 mm according to Karten and Hodos [20]. The

electrodes consisted of a pair of insulated stainless steel

wires (0.08 mm diameter) with bare tips (0.5 mm) stag-

gered 3 mm apart (for details Schall et al. [21]). A loop of

bare stainless steel wire placed posterior under the scalp

served as the indifferent electrode. Postoperative care

included treatment with antibiotics and analgesics.

The recordings in awake birds commenced 3 weeks after

the surgery. The animals were restrained in a cloth sack,

their heads protruding through an opening. Leads with

plugs established the link between the chronically

implanted electrodes and the EEG recording system

(Brain Amp DC; Brain Products Inc., Brain Products

GmbH, Gilching, Germany). The auditory evoked

potentials were digitized at 1000 Hz, band pass filtered

between 30 Hz (24 dB/oct) and 0.01 Hz and amplified

with a resolution of 0.1 μV and a maximum range of

3.3 mV. EEG data were analysed offline for 500 ms

epochs (100 ms before and 400 ms after stimulus onset)

using baseline correction, artefact rejection and aver-

aging. Epochs with movement or eye-blink artefacts were

excluded when the EEG signal exceeded a difference of

200 μV within 200 ms in each segment.

Pure 800 and 1400 Hz tones of 60 ms duration with 10 ms

onset and offset ramps, respectively, were delivered at

about 60–70 dB Sound Pressure Level through a loud-

speaker placed near the pigeon’s head. Two randomized

sequences of 10 min were presented at 500 ms inter-

stimulus intervals (i.e. stimulus offset to onset), with the

low-pitch tone serving as the frequent standard stimulus

(STD) and the high-pitch tone as the rare (P= 0.125)

deviant stimulus (DEV) and vice versa as a means to

control for obligatory sound frequency effects (i.e.

standard-as-deviant or ‘flip-flop design’). Further

recordings were performed about 5 min after intramus-

cular injections of 5 mg/kg ketamine.

As a control procedure for potential stimulus probability

confounds, DEV and STD recorded in three birds while

embedded with 275, 350, 500, 2600, 5000 and 9600 Hz

pure tones presented at equal probability of P= 0.125 in a

randomized sequence (multistandard control condition

[7]; Fig. 1).

Animals were killed following completion of the experi-

ments using a lethal dose of pentobarbital. Their brains

were extracted from the skull, fixed in formalin, sec-

tioned with a freezing microtome and Nissl-stained to

verify electrode tracks and tip positions.

Raw recording data were normalized to the scale 0–1 by

assigning the value of 0 to the largest negative recording

value of the ERP and 1 to the largest positive recording

value of the ERP across all recording conditions for each

individual bird to account for between-subject differ-

ences in scaling. Normalized data of individual ERP

peaks and MMN mean amplitudes were parametrically

tested after the procedures for small samples [22]. An

α-value less than 0.05 (two-sided) was accepted as sta-

tistically significant.

Results
Data from one bird were excluded from group analysis

due to poor signal-to-noise quality and electrode mis-

placement just outside the target area.

Data presented here are based on greater than 85%

useable recordings following artefact rejection. The

averaged auditory evoked potentials consisted of an early

positive peak (P1), with a poststimulus onset latency of

30 ms, followed by a prominent negative peak (N1) at
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about 55 ms, a positive peak (P2) at 90 ms, a smaller

negative peak (N2) at about 125 ms, and two late positive

peaks at 205 ms (P3) and 265 ms (P4; Fig. 2). However,

the P4 component was only present in response to

deviant stimuli (Fig. 3a).

An MMN-like field potential peaking at N2 was con-

firmed for the high-pitch deviant versus low-pitch stan-

dard contrast (t= 7.8, d.f.= 3, P= 0.004; Fig. 2b) but not

for the reversed contrast (t= 0.7, d.f.= 3, P= 0.53;

Fig. 2a). The former MMN-like ERP was further con-

firmed for the high-pitch deviant versus high-pitch

standard contrast (t= 5.2, d.f.= 3. P= 0.014) but not for

the low-pitch deviant versus low-pitch standard contrast

(t= 2.3, d.f.= 3, P= 0.10; Fig. 2c). Finally, contrasting the

combined low-pitch and high-pitch deviant ERPs with

the combined low-pitch and high-pitch standard ERPs

recorded in the separate multistandard recording proce-

dure (Fig. 1) resulted in an MMN-like response ranging

from 50 to 250 ms after stimulus onset (t= 4.3, d.f.= 2,

P< 0.05; Fig. 2c).

Systemic intramuscular 5 mg/kg ketamine injections dif-

ferentially affected standard and deviant stimulus pro-

cessing (Fig. 3). P2 peak amplitudes in response to

standard stimuli were reduced with ketamine (t= 3.4,

d.f.= 3, P= 0.04; Fig. 3a), whereas predominantly larger

P1 and P3, and smaller N2 peak amplitudes were recor-

ded in response to deviant stimuli (Fig. 3b), thereby

resulting in a significant reduction in the MMN-like ERP

in the poststimulus onset period of 100–230 ms (t= 4.6,

d.f.= 3, P= 0.02; Fig. 3c and d).

Discussion
We found intracranial MMN-like ERPs in Field L of

pigeons in response to pitch deviance ranging from 50 to

250 ms after stimulus onset. This MMN-like response at

around the N2 peak appears to be more pronounced in

response to rare high-pitch deviants than in response to

low-pitch deviants, even when controlling for tone pitch

(‘flip-flop’ control) and stimulus habituation (multi-

standard control). This finding is consistent with findings

of MMN-like ERPs in rodents [7,23–26]. Obligatory

frequency mechanisms are unlikely to account for the

mismatch response in our study as auditory evoked field

potentials in response to low-pitch and high-pitch STD

did not significantly differ and, furthermore, the magni-

tude of Field L auditory field potentials in pigeons does

not significantly differ between 800 and 1400 Hz, which

is close to the optimum frequency range of this brain area

[18]. This frequency range is also substantially lower than

that of rodents and corresponds more closely to the

human optimal frequency range. However, minor dif-

ferences in ERP amplitude may be present depending

on electrode positioning relative to tonotopic optima [18].

Consistent with human and animal literature [6,7,10–13],

the MMN-like ERP in pigeons was diminished by sys-

temic low-dose (nonanaesthetic) ketamine administration

by differentially affecting the respective ERPs in

response to STD and DEV tones. In particular, the late

positive peak (P2) was smaller with ketamine, without

affecting any other component of the STD ERP. By

contrast, all positive components (P1, P2 and P3)

increased in magnitude with ketamine for the DEV ERP,

whereas N2 became smaller. The net effect was a

reduction in the mismatch response 100–230 ms after

stimulus onset (equivalent to P2, N2 and P3), whereas

the early MMN in the latency range of the N1 compo-

nent remained unchanged with ketamine.

We also found a late positive ERP component (P4) with a

latency of 250–350 ms that was only present for the DEV

Fig. 1
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response, thus resembling a human P300 ERP compo-

nent that is usually elicited in oddball paradigms.

Notably, this late P4 component, like the early N1

component, was not significantly attenuated by keta-

mine. These findings are consistent with the anatomical

literature showing that Field L is surrounded by a high

NMDA-receptor-dense shell [27].

Taking these findings together, our study revealed an

MMN-like ERP in birds. This finding suggests that a

mammalian cortex is not a prerequisite for auditory mis-

match processing. The apparent communality of the

psychophysiological and pharmacological characteristics

spanning across species like birds, rodents and

nonhuman and human primates seems to point towards a

phylogenetically ancient mechanism that may be com-

mon to all vertebrates that have evolved hearing. As the

latter has evolved from the vibration senses, it is not

surprising that an electrophysiological mismatch response

can also be recorded in response to somatosensory odd-

ball stimuli in humans [28].

Nonetheless, some caution needs to be exerted when

interpreting our data. Although the findings are robust,

our study is limited by sample size and requires replica-

tion. Future studies should also use a drug challenge

procedure testing drug effects dose-dependently, while

more detailed psychophysiological characterization of the

Fig. 2
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Group-averaged event-related potentials (ERPs) in response to low (800 Hz) and high (1400 Hz) pitch tones presented as frequent standard (STD)
or rare (P=0.125) deviant (DEV) oddball stimuli and corresponding mismatch negativity (MMN) subtraction waveform (DEV−STD). The horizontal
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MMN-like ERP in birds is indicated, for instance, by

testing other deviant features (e.g. stimulus duration or

intensity, or using more complex sounds) and varying

oddball probabilities.

Conclusion
The current study has provided some evidence for

auditory sensory memory processing that appears to be

homologous to that in mammals and suggestive of a

common ancestry 300 million years ago or of convergent

evolution. Subsequent research, however, should focus

on the optimization and standardization of this proce-

dure, thus establishing a tool to test the avian auditory

system comparatively. This research may also lead to new

insights into important aspects of the pathophysiology

underlying schizophrenia by investigating an avian ani-

mal model, which is more closely aligned to the time

course of neurodevelopmental synapse formation and

maturation in primates than to that in rodents [17].
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