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Hemispheric asymmetries play an important role in almost all cognitive functions. For more
than a century, they were considered to be uniquely human but now an increasing number
of findings in all vertebrate classes make it likely that we inherited our asymmetries from
common ancestors. Thus, studying animal models could provide unique insights into the
mechanisms of lateralization. We outline three such avenues of research by providing an
overview of experiments on left–right differences in the connectivity of sensory systems,
the embryonic determinants of brain asymmetries, and the genetics of lateralization. All
these lines of studies could provide a wealth of insights into our own asymmetries that
should and will be exploited by future analyses.
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INTRODUCTION
The two hemispheres of the human brain are not equivalent. Rel-
ative functional differences between the left and the right side
of the brain, so-called functional hemispheric asymmetries, have
been observed for several cognitive functions (Corballis, 2009).
For example, most individuals show a right-hemispheric domi-
nance for visuo-spatial processing (e.g., Vogel et al., 2003) and a
left-hemispheric dominance for production and processing of lan-
guage (e.g., Bethmann et al., 2007; Ocklenburg et al., 2011a). In
addition to these functional hemispheric asymmetries, anatomi-
cal differences between the two sides of the brain (e.g., in volume
or size of a certain area), so-called structural hemispheric asym-
metries, have can be found in a wide range of brain regions (e.g.,
Amunts, 2010). Several explanations for the emergence of hemi-
spheric asymmetries have been given, including an enhancement
of an individual’s ability to perform two different tasks at the
same time (Rogers et al., 2004), an increase in neural capacity due
to an avoidance of unnecessary duplication of neural networks
(Vallortigara, 2006) and the greater speed of uni-hemispheric
processing since no interhemispheric transfer via the corpus cal-
losum is needed (Ringo et al., 1994). Historically, the scientific
exploration of hemispheric asymmetries started with a seminal
paper by a French surgeon called Broca (1861), who described
a patient called Monsieur Tan because the only syllable he was
able to generate was “tan.” Post-mortem analysis of this massively
speech-impaired patient’s brain revealed a large lesion in the left
posterior inferior frontal gyrus, an area now known as Broca’s
area. This result indicated for the first time that the left hemi-
sphere is highly relevant for language production. After this initial
discovery in the language system, hemispheric asymmetries were
thought to be uniquely human. In contrast to this view, left–right

asymmetries of brain and behavior have now been observed in
all vertebrate classes including mammals (Corballis, 2009), birds
(Rogers, 2008; George, 2010; Güntürkün and Manns, 2010), rep-
tiles (Bisazza et al., 1998; Bonati et al., 2008, 2010; Csermely et al.,
2010, 2011), amphibians (Bisazza et al., 1998; Vallortigara, 2006),
bony fishes (Vallortigara and Rogers, 2005; Lippolis et al., 2009;
Dadda et al., 2010a), as well as cartilaginous, and jawless fishes
(Concha and Wilson, 2001). Recent evidence for asymmetrical
organization in only distantly related invertebrate species, ranging
from Octopus vulgaris (Byrne et al., 2002) to the honey bee Apis
mellifera (Rogers and Vallortigara, 2008; Frasnelli et al., 2010) and
the nematode Caenorhabditis elegans (Taylor et al., 2010) – just
to name a few examples – revealed that lateralization is indeed
not restricted to humans, but constitutes a fundamental principle
of nervous system organization. Lateralization is highly relevant
for animal behavior and possibly survival. For example, chicks
recognize familiar birds better with the left than with the right
eye (Vallortigara, 1992) and react faster to a predator approach-
ing from the left than from the right side (Vallortigara, 2006),
while most species fish show a consistent tendency to turn prefer-
entially to one side when facing an obstacle while fleeing from a
predator (Bisazza et al., 2000). These discoveries yield tremendous
possibilities regarding the employment of model species in order
to investigate the ontogenesis and phylogenesis of human brain
asymmetry. Unfortunately, there has never been a strong integra-
tion of research in humans and non-human animals in the field
of hemispheric asymmetries, a circumstance that may be rooted
in the assumption of human exceptionalism that dominated the
field from early on (Taylor et al., 2010). In the present review, we
argue that an interdisciplinary comparative approach, combin-
ing findings from psychology, biology, neuroscience, and genetics,
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provides a uniquely powerful tool in order to advance understand-
ing of the ontogenetic and phylogenetic processes responsible for
lateralization.

For example, one field of research in which the integration
of findings from diverse animal species has influenced current
views about evolution and development of human lateralization is
the study of language lateralization. About 95% of right-handers
and 75% of left-handers show left-hemispheric language domi-
nance (Bethmann et al., 2007), a feature that was widely thought
to be uniquely human (Corballis, 2009). Contradictory to this
view, evidence suggesting a left-hemispheric dominance for con-
specific communication has now been observed not only in a
wide variety of mammals like chimpanzees (Taglialatela et al.,
2008), rhesus monkeys (Hauser and Andersson, 1994), gray mouse
lemurs (Leliveld et al., 2010), dogs (Siniscalchi et al., 2008), mice
(Ehret, 1987), and sea lions (Böye et al., 2005) but also in some
non-mammalian vertebrate species like frogs (Bauer, 1993). More-
over, a left hypoglossal dominance has been reported in canaries
(Nottebohm and Nottebohm, 1976). Interestingly, it has been
shown that animal communication asymmetries are modulated
by the emotional content of the communicative sounds, with a
greater involvement of the right hemisphere during production
or perception of communicative sounds expressing or eliciting
fear (Hook-Costigan and Rogers, 1998; Siniscalchi et al., 2008).
These findings parallel the right-hemispheric dominance for neg-
ative emotions in humans (e.g., Onal-Hartmann et al., 2011).
Taken together, while the evidence remains sparse for most ver-
tebrate orders and certainly more research addressing this topic
is needed, a recent cladographic comparative study (Ocklenburg
et al., 2011b) concluded that there is convincing evidence for later-
alization of production and perception of conspecific vocalization
in several mammalian species, especially within the order of Pri-
mates. These findings suggest a phylogenetically early emergence
of vocal communication asymmetries. Thus, human language lat-
eralization might not be due to a dominance of the left hemisphere
for language as such, but rather due to a left-hemispheric dom-
inance for more basic features of species-typical communicative
sounds or their production (Böye et al., 2005). Hence, lateraliza-
tion of cognitive functions in the human brain did not necessarily
emerge during human evolution. Instead, it may have been incor-
porated into the functional architecture of cognitive functions of
which some, like language, are unique to Homo sapiens (Mac-
Neilage et al., 2009). Therefore, we will now focus on several
key questions of human lateralization and will outline how a
comparative approach could possibly help to elucidate them.

CONNECTIONS MATTER: THE ROLE OF WHITE MATTER
TRACTS IN LATERALIZED FUNCTIONING
What exactly causes functional hemispheric asymmetries? A com-
mon conception is that functional asymmetries are a consequence
of structural asymmetries in the brain (Wada, 2009). Tradition-
ally, research regarding this question has focused on macroscopic
gray matter asymmetries such as volume or shape of certain brain
areas (Amunts, 2010). However, it has been surprisingly difficult
to find any clear-cut links between structural gray matter asym-
metries in the human brain and left–right differences of behavior
(Dos Santos Sequeira et al., 2006). Interestingly, evidence from

recent studies in animal models suggests that structural asymme-
tries in connectivity patterns of homologous regions in the two
hemispheres may be of greater functional relevance than asym-
metries in region size or volume. One of the major animal models
to investigate the neuronal foundations of hemispheric asymme-
tries is the visual system of birds. The two hemispheres of birds
display a complementary pattern of visual analysis. The left hemi-
sphere is specialized for detailed object analysis, attends to local
features and excels in the categorization of visual stimuli (Val-
lortigara et al., 1996; Yamazaki et al., 2007). In contrast, the right
hemisphere extracts relational configurations of visual stimuli that
can be relevant during spatial orientation (Vallortigara et al., 2004;
Yamazaki et al., 2007; Rugani et al., 2011). Additionally, the right
hemisphere is in charge of visually guided social interactions (Rosa
Salva et al., 2010), fear and escape responses (Rogers, 2000; Kobo-
roff et al., 2008), sexual contacts (Gülbetekin et al., 2007), and
encoding of relational spatial information (Tommasi and Vallorti-
gara, 2001). Thus, each hemisphere seems to process visual stimuli
in a different way. Anatomical and physiological studies support
this dissociation and demonstrated that asymmetrical projections
of the ascending visual pathways underlie parts of these lateralized
visual behaviors.

Like mammals, birds process visual information within two
ascending pathways, the thalamofugal, and the tectofugal system
(see Figure 1).

The thalamofugal pathway corresponds to the mammalian
geniculostriate system and transfers retinal information via the
contralateral geniculate complex (GLd) bilaterally onto the telen-
cephalic visual Wulst. The tectofugal system corresponds to the
mammalian extrageniculostriate pathway and projects via the con-
tralateral midbrain optic tectum and the thalamic nucleus rotun-
dus to the telencephalic entopallium (Manns and Güntürkün,
2009). A wealth of studies has revealed connectional asymme-
tries in the thalamofugal and tectofugal pathways of both chicks
and pigeons (Rogers, 2008). For example, Rajendra and Rogers
(1993) retrogradely traced projections from the dorsolateral ante-
rior thalamus to the hyperpallium apicale (old nomenclature:
hyperstriatum accessorium) in chicks and found that the ratio of
labeled cells in the side of the thalamus contralateral to the injec-
tion site compared to the number of labeled cells in the side of the
thalamus ipsilateral to the injection site was significantly greater
for tracer injections in the right hemisphere compared to injec-
tions in the left hemisphere. In pigeons, the tectofugal pathway is
the most important pathway for visually guided behavior. Since the
optic nerve of birds is essentially crossed and since pigeons have
laterally placed eyes, retinal fibers of the tectofugal system create a
uni-hemispheric representation of the contralateral visual field in
the midbrain tectum. From there, tectal neurons project bilaterally
onto the thalamic rotundus (Güntürkün et al., 1993). Accordingly,
rotundal and entopallial neurons often respond to visual stimula-
tion from both eyes (Folta et al., 2004). However, the tectorotundal
pathway has an asymmetry in its crossing component: more fibers
cross from right tectum to left rotundus than from left tectum to
right rotundus (Güntürkün et al., 1998). In line with the stronger
bilateral input toward the left half of the brain, electrophysiolog-
ical studies demonstrated that a higher number of left rotundal
neurons respond to contralateral as well as ipsilateral visual input
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FIGURE 1 | Comparison of mammalian and avian ascending visual

pathways and asymmetries of the tectofugal pathway in pigeons. (A)

Schematic sagittal view of the geniculostriate (blue) and extrageniculostriate
(orange, red) projections in the monkey brain. Brainstem and thalamic
structures are depicted as transparent to visualize their position under the
cortex. (B) Schematic sagittal view of the thalamofugal (blue) and tectofugal
(orange, red) pathways in the pigeon brain. These pathways correspond to
the geniculostriate and extrageniculostriate system, respectively. (A,B)

Dorsal is upward and rostral is to the right. (C,D) Schematic frontal views of
the forebrain and brainstem of the pigeon brain showing the thalamofugal
(C) and the tectofugal (D) pathways. Note the larger right-to-left projection
of the tectorotundal efferents in the tectofugal system (D). The organization
of the sections in (C,D) shows all relevant components within the same
plane and is not anatomically correct. Abbreviations: GLd, nucleus
geniculatus lateralis pars dorsalis; MT, middle temporal visual area (also V5);
V1, primary visual cortex.

(Folta et al., 2004). Thus, the left tectofugal pathway predomi-
nantly integrates input from both eyes and possibly enables a more
complete representation of the visual scenery. This assumption
was tested psychophysically by Güntürkün and Hahmann (1999)
with unilateral rotundus lesions. They demonstrated that dam-
ages to the left rotundus led to a bilateral decrease in visual acuity
whereas right-sided lesions only had a minor contralateral impact.
In a further study, Valencia-Alfonso et al. (2009) trained pigeons
in a task where each eye was exposed to different color pairs.
Accordingly, each hemisphere had only direct experience with one
pair of colors. As a consequence, there was a pair of “known”
(learned with the contralateral eye) and “unknown” (learned ipsi-
laterally) colors for each hemisphere. Then, each eye/hemisphere
was separately tested with a mixture of known and unknown color
pairs. While discriminating known color pairs evinced no asym-
metry, the left hemisphere demonstrated better performance in
discriminating the unknown stimulus pair. Thus, the left hemi-
sphere had more access to information from the ipsilateral eye
than the right hemisphere. This is a strong argument for the left
hemisphere having a more bilateral representation of the visual
input compared to the right hemisphere. In sum, the ascending
tectofugal pathway displays a neuronal organization that creates
an asymmetrical representation of the visual scene at the fore-
brain level. This enables the left hemisphere to process and to

compare visual objects irrespective of their location within the
whole visual scenery. This functional asymmetry results from left
to right differences of white matter projections at the junction
between midbrain and thalamus.

In humans, much less is known about the relation between
structural asymmetries in white matter projections and functional
lateralization. A first clue comes from a recent diffusion tensor
tractography study (Barrick et al., 2007) in which two asymmet-
ric white matter pathways were identified in the human brain:
firstly, a rightward-asymmetric pathway connecting the poste-
rior temporal lobe to the superior parietal lobule and secondly a
leftward-asymmetric pathway connecting the parietal and frontal
lobes to the temporal lobe. The authors suggest that the rightward-
asymmetric pathway may be related to a rightward functional
lateralization of auditory spatial attention and working memory
whereas the leftward-asymmetric pathway may be related to left-
ward functional lateralization for language, but they did not test
this assumption on a behavioral level. More direct evidence comes
from a combined diffusion tensor imaging tractography and func-
tional magnetic resonance imaging study in alcoholics and healthy
controls (Schulte et al., 2010) were it was observed that white mat-
ter fiber degradation in the Corpus Callosum due to alcoholism
leads to an attenuated pattern of functional visuo-motor asym-
metries. While these studies are only a first step, they nevertheless
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show that, parallel to the work that has been conducted in birds,
it may indeed be a promising approach to further investigate the
role of structural white matter asymmetries in the human brain
in order to reveal the underlying neurophysiological processes of
human functional hemispheric asymmetries.

IT ALL STARTS IN THE EGG: THE ROLE OF EARLY
ONTOGENETIC SIGNALS FOR ASYMMETRY FORMATION
Do non-genetic factors play a role in human asymmetry forma-
tion or not? For handedness, some evidence suggests so, including
the frequent observation of discordant handedness in monozy-
gotic twins (Gurd, 2006), the lower incidence of left-handedness
in countries where the left hand is associated with uncleanli-
ness (Zverev, 2006), the higher incidence of left-handers among
individuals born in spring and ensuing months than among indi-
viduals born during the rest of the year (Jones and Martin, 2008)
as well as parental influences on handedness (Laland, 2008). For
other types of functional hemispheric asymmetries, not much is
known in humans. In birds, however, early ontogenetic signals
have repeatedly been shown to play a crucial role for asymme-
try formation and similar findings have also been reported for
zebrafish (Andrew et al., 2009). Avian embryos consistently keep
their head turned such that the right eye is close to the egg shell
and the left eye is occluded by the body (Kuo, 1932). Since breed-
ing birds regularly turn their eggs and intermittently leave the
nest, eggs are frequently exposed to light which traverses the egg
shell and primarily stimulates the right eye (Buschmann et al.,
2006). As a consequence, most chickens and pigeons develop right
eye superiority in visual discrimination (Güntürkün et al., 2000;
Deng and Rogers, 2002). Incubation in the dark prevents develop-
ment of functional asymmetries (Rogers, 1982; Zappia and Rogers,
1983; Deng and Rogers, 2002), and abolishes anatomical asymme-
tries within the visual pathways (Manns and Güntürkün, 1999).
Experimentally induced embryonic bilateral light exposure cre-
ates symmetrical posthatch performance (Deng and Rogers, 2002).
Embryonic (Rogers, 1990) or posthatch (Manns and Güntürkün,
1999) visual stimulation of the left eye can even reverse behavioral
asymmetry, in chicks and pigeons respectively. Thus, normal rear-
ing conditions correspond to right eye stimulation, resulting in
left hemisphere superiority for visual object discrimination. This
population bias is not genetically determined by factors within
the visual system but by the lateralized epigenetic light factor that
results from the genetically determined body position.

The resulting asymmetry in visual object discrimination is
mediated through activity differences between left and right reti-
nal ganglion cells. Since synaptic maturation of visual pathways
is regulated by retinal activity (Ruthazer and Cline, 2004), tran-
siently blocking right eye retinal activity in pigeons reverses visual
asymmetry for the entire life (Prior et al., 2004). The lateralized
retinal activation asymmetrically regulates tectal neurons, which
in turn possibly release tectal brain derived neurotrophic factor
(BDNF) asymmetrically (Manns et al., 2008). BDNF affects synap-
tic transmission and controls neurite sprouting and maintenance
(Cohen-Cory and Lom, 2004). BDNF and the signaling cascade
of its high-affinity receptor TrkB are asymmetrically activated in
response to embryonic light stimulation (Manns et al., 2005). The
small G protein p21Ras is a critical molecular switch for relaying

neurotrophic actions into morphological changes. Its amount
within the pigeon’s optic tectum depends on photic stimulation
and consequently shows profound left–right differences (Manns
et al., 2005). It is likely that BDNF, TrkB, and p21Ras represent one
of the biochemical pathways that translate a transient embryonic
visual stimulation asymmetry into structural left–right differences
of the tectofugal system that then determine lateralized visually
guided behavior for the entire lifespan of the animal. The biased
embryonic photic input ignites several asymmetries (object dis-
crimination: Rogers, 1990; left–right discrimination: Chiandetti
and Vallortigara, 2009), while leaving others unaffected (visual
reaction to novelty: Chiandetti et al., 2005; Rogers, 2008). Thus,
the neuronal effects of lateralized embryonic visual stimulation
only affect some of the visually guided functions.

The development of visual object discrimination asymmetries
in birds demonstrates that the establishment of a functional asym-
metry can proceed along the same principles of synaptic plasticity
that are already well known from other sensory systems. Avian
visual asymmetry results from an interaction between an epi-
genetic event (left–right differences of light stimulation) and a
genetic factor (embryonic right-turn of the head; see Figure 2;
Manns, 2006; Manns and Güntürkün, 2009).

Comparable events may have relevance also in the mammalian
and thus the human brain. An asymmetrical environmental stim-
ulation is able to induce the formation of structural and physiolog-
ical left–right differences within the ascending sensory pathways.
It is conceivable that such a critical role of a lateralized experience
is not confined to sensory systems but also applies to the develop-
ment of motor asymmetries as in the case of human handedness.
For example, the ability of spinally controlled motor asymmetries
to influence the cerebral cortex may represent a human corollary
to the avian system (Ververs et al., 1994). In this case, early spinal
asymmetries could act as lateralized “precursors” of asymmetri-
cal cortical motor functions (Hiscock and Kinsbourne, 1995). But
early motor asymmetries could also shape sensorimotor circuits
of hand control in a lateralized way. Like birds, humans have an
early bias to turn the head to the right (Ververs et al., 1994). This
early prenatal bias not only persists into adulthood (Güntürkün,
2003) but also correlates with right handedness (Ocklenburg and
Güntürkün, 2009). This relation between head position and hand
use could result from a higher probability of visuo-motor coupling
between gaze position and the right hand during early childhood.
To test the causal nature of this link, Ocklenburg et al. (2010)
studied children with torticollis, a condition that causes a sub-
tle pathological tilt of the head to the left or to the right, in
combination with a contralateral rotation of face and chin. The
resulting head posture leads to an increased visual experience of
the hand contralateral to the head-tilt and had a strong effect
on handedness. Relative to controls, children with torticollis had
a higher probability of right- or left-handedness when having a
head-tilt to the opposite side. Thus, early biased sensory input
or motor preference could modify lateralized systems of humans.
The physiological mechanism underlying this modulation may
be not identical to the impact of early visual stimulation of one
eye in birds. Nevertheless, these findings show that, comparable to
birds, a non-genetic, experience-based factor can influence human
lateralization.
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FIGURE 2 | Sequence of relevant ontogenetic events that

possibly constitute components of the development of visual

asymmetry in pigeons. The top picture shows a pigeon embryo
during hatch. Note the position of the head that is turned to the right
such that the right eye is positioned close to the eggshell. The

resulting biased light input before hatch is translated into
morphological asymmetries of ascending visual pathways that then
results in left–right differences of behavior. The bottom picture
shows an adult pigeon wearing an eye cap and participating in a
pattern discrimination task.
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THE GENETICS OF ASYMMETRY: FROM ZEBRAFISH TO
HUMAN
Which genetic factors play a role in human asymmetry forma-
tion? While there is very little doubt that handedness and language
lateralization, the two most obvious examples of functional lat-
eralization in humans, are, at least to some extent, genetically
determined (Corballis, 2009), the answer to this question proved
to be surprisingly difficult to find. Based on indirect statistical
evidence, several authors suggested a common monogenetic back-
ground for these two traits (e.g., Annett, 2002). This view has
repeatedly been questioned during recent years and it has been
suggested that at least partly independent polygenic mechanisms
for the inheritance of language lateralization and handedness exist
(e.g., Medland et al., 2009; Tzourio-Mazoyer et al., 2010). The
biggest problem of monogenic theories of handedness and lan-
guage lateralization is that, despite continuous efforts to do so, no
single gene has ever been identified that explains even remotely
enough variance in behavioral lateralization data to qualify for
a single gene explanation. Moreover, a recent study found an
effect of LRRTM1 on chromosome 2p12 (a gene that is possi-
bly involved in neural differentiation in the brain) on handedness
in a sample of dyslexic siblings, but not in a sample of healthy sib-
lings (Francks et al., 2007). The authors therefore suggest that
the effect of LRRTM1 on behavioral lateralization depends on
other genetic and environmental factors in order to manifest and
they concluded that handedness and brain lateralization are likely
to be etiologically complex traits that are influenced by mul-
tiple genetic and environmental factors (Francks et al., 2007).
This conclusion was also recently supported by a genome-wide
association study that reported an association of another gene
(PCSK6) with handedness in as dyslexic sample (Scerri et al.,
2011).

Comparative studies on the genetics of brain lateralization also
indicate that it is indeed highly unlikely that handedness and brain
lateralization are determined by a single gene. The most widely
used vertebrate model species in research on the genetic back-
ground of hemispheric asymmetries is the zebrafish (Danio rerio).
The epithalamus of the zebrafish, a brain region consisting of the
left and right habenula as well as the medial pineal organ and
the parapineal organ, shows pronounced structural hemispheric
asymmetries regarding its neuronal organization (Dadda et al.,
2010b). Most notably, the parapineal organ lies to the left of the
pineal organ in most individuals (see Figure 3).

These epithalamic asymmetries are regulated by several genes
in the Nodal signaling pathway with the exact mechanisms having
been reviewed elsewhere (Snelson and Gamse, 2009; Taylor et al.,
2010; Roussigné et al., 2011). Interestingly, when Nodal genes are
not expressed at all, epithalamic asymmetries are not absent, but
their direction is determined at random (Concha et al., 2000). This
shows that Nodal genes only determine the direction of asym-
metries but not their initial establishment (Concha et al., 2000),
possibly indicating that another signaling pathway is relevant for
initial symmetry breaking. Recently, several studies have reported
a link between the genetically controlled structural asymmetry in
the zebrafish epithalamus and functional lateralization. For exam-
ple, the commonly observed reversal of heart, gut, and structural
diencephalic asymmetries in the frequent-situs-inversus (fsi) line

FIGURE 3 | Leftward asymmetry of the parapineal organ in a zebrafish

made visible by green fluorescent protein expression in a transgenic

tg(foxD3:GFP)zf15 zebrafish (Modified from Dadda et al., 2010b).

Rostral is upward and caudal is downward.

of zebrafish is related to a reversal of functional asymmetries in
several behavioral laterality tests, including mirror viewing and
approaching a target to bite (Barth et al., 2005). These findings
suggest that at least two different genetic mechanisms influence
different forms of functional lateralization in the zebrafish (Barth
et al., 2005). More recently, it has been reported that zebrafishes
with a left or right parapineal organ show significant differences
in several behavioral laterality tests, including eye preference for
viewing their own reflection, eye use in predator inspection, rota-
tional preference, and turning direction in the dark (Dadda et al.,
2010b), indicating a clear link between structural and functional
asymmetry. Apart from zebrafish, similar findings regarding habe-
nular and behavioral asymmetry have also been observed in two
different cichlid species (Reddon et al., 2009; Gutiérrez-Ibáñez
et al., 2011). Not much is known about the relation of epithala-
mus structure and functional lateralization in humans, and human
functional asymmetries are most likely driven by different genetic
mechanisms. However, functional hemispheric lateralization is a
conserved feature of the central nervous system in vertebrates (Val-
lortigara et al., 1999; Vallortigara and Rogers, 2005; Bianco et al.,
2008) and, as such, the findings in the zebrafish could possibly
help to understand why no single gene determining handed-
ness and language lateralization in humans has been found yet.
From a comparative point of view, it is highly questionable that
a trait like brain asymmetry which is determined by two complex
polygenic signaling pathways in one vertebrate species is deter-
mined by only a single gene in another vertebrate species. Thus,
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when viewing lateralization in H. sapiens from this perspective,
it becomes clear that it is necessary to develop polygenic instead
of monogenic theories for its ontogenesis. Particularly, the idea
that two different signaling pathways may control for the initial
establishment and direction of asymmetries could fundamen-
tally change theoretical approaches to asymmetry formation in
humans.

CONCLUDING REMARKS
Comparative approaches have greatly enhanced our understand-
ing of several different human cognitive domains (de Waal and
Ferrari, 2010; Haun et al., 2010). In line with these scientific
success stories, comparative neuroscience also allows for unique
insights into ontogenetic and phylogenetic processes responsi-
ble for human brain lateralization. These insights, however, are
only parts of the whole story and it becomes increasingly clear
that we are still far away from having a complete understanding
of the complex interactions of non-genetic and genetic factors
that underlie the neurophysiological processes that drive human

functional hemispheric asymmetries. Genetic and neuroscien-
tific methods are rapidly advancing but we need to integrate the
resulting insights into a broader comparative schema. To this
end, it is fundamentally important to understand that human
lateralization is not unique, but a trait that is shared with a
multitude of other vertebrates. The idea of human exceptional-
ism had and still has a strong impact on lateralization research.
Only by abandoning this approach and viewing H. sapiens as one
vertebrate species among many, we will be able to solve the rid-
dle of functional hemispheric asymmetries in humans and other
animals.
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