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Pigeons responded in a perceptual categorization task with six different stimuli (shades of gray), three
of which were to be classified as ‘‘light’’ or ‘‘dark’’, respectively. Reinforcement probability for correct
responses was varied from 0.2 to 0.6 across blocks of sessions and was unequal for correct light and dark
responses. Introduction of a new reinforcement contingency resulted in a biphasic process of
adjustment: First, choices were strongly biased towards the favored alternative, which was followed by a
shift of preference back towards unbiased choice allocation. The data are well described by a signal
detection model in which adjustment to a change in reinforcement contingency is modeled as the
change of a criterion along a decision axis with fixed stimulus distributions. Moreover, the model shows
that pigeons, after an initial overadjustment, distribute their responses almost optimally, although the
overall benefit from doing so is extremely small. The strong and swift effect of minute changes in overall
reinforcement probability precludes a choice strategy directly maximizing expected value, contrary to
the assumption of signal detection theory. Instead, the rapid adjustments observed can be explained by
a model in which reinforcement probabilities for each action, contingent on perceived stimulus
intensity, determine choice allocation.
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_______________________________________________________________________________

Optimal choice in natural environments
requires the integration of several sources of
information, such as sensory evidence (e.g.,
distinguishing different food types, or apprais-
ing potential mating partners) and knowledge
about reinforcer availability (e.g. food reple-
tion at different patches; Pyke, Pulliam, &
Charnov, 1977). Signal detection theory (SDT;
Green & Swets, 1966) specifies how sensory
evidence and knowledge about reinforcer
availability and magnitude should be integrat-
ed in order to optimize choice allocation
relative to a specific decision goal, such as
maximizing expected value (e.g., the number
of reinforcers attained).

A standard laboratory procedure employing
SDT analysis is a psychophysical yes–no task.
The subject is repeatedly presented with one
of two stimuli (S1 and S2), occurring in

random succession. The subject’s task is to
identify each stimulus by making response R1

if S1 was presented or R2 if S2 was presented.
Figure 1a shows the four possible outcomes of
this procedure, only two of which are correct
with probabilities p(R1|S1) and p(R2|S2). In
most animal psychophysics experiments, cor-
rect responses are reinforced while incorrect
responses are either not reinforced or pun-
ished. Furthermore, the magnitude or fre-
quency of reinforcement is usually identical
for both types of correct responses (hence-
forth referred to as a balanced or symmetrical
payoff matrix as opposed to situations where
frequency or magnitude of reinforcement
differ between the types of correct responses,
henceforth referred to as unbalanced or asym-
metrical). The magnitudes (values) of positive
reinforcement for correct responses are de-
noted VR1|S1 and VR2|S2, the magnitudes of
punishment (costs) are denoted CR2|S1 and
CR1|S2. While most research employing SDT
employs balanced payoff matrices, equal rein-
forcement for all types of correct responses is
the exception rather than the rule in natural
environments; taking a foraging animal as an
example, some locations may be more likely to
provide food, or mating partners, or both,
than others. SDT takes this into account by
allowing the computation of the optimal
allocation of responses as a function of both
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sensory uncertainty (asking which stimulus has
been presented) and unequal rates of rein-
forcement (asking which response, if correct,
is the more profitable).

SDT assumes that, every time a fixed
physical stimulus is presented to an observer,
its energy is transformed into a variable
internal representation (Boneau & Cole,
1967), the decision variable, which can be
thought of as perceived stimulus intensity.

The source of the variability of the represen-
tation is not further specified, but could be
conceptualized as drifts of attention or ran-
dom fluctuations in the sensory transduction
process. The distribution of the internal
representation of the stimulus is usually
assumed to be normal (see Figure 1b for
illustration). These distributions are therefore
likelihood functions, each denoting the likeli-
hood that a certain value x on the decision axis
arose from presentation of its corresponding
stimulus. If the task is to discriminate S1 from
another stimulus S2, the subject is assumed to
compare the heights of the two likelihood
functions at the location of perceived intensity
x on a given trial—the likelihood ratio LR:

LR~
l(S2jx)

l(S1jx)
ð1Þ

The decision rule is to respond R2 when the
LR exceeds a threshold b, and to respond R1

otherwise. In Figure 1b, the two stimulus
distributions overlap. For example, an internal
value of 4 can arise both from S1 or S2

presentation, even though the likelihood
(height of the bell-shaped curves at x 5 4) of
S1 is much higher than the likelihood of S2. At
this point, the observer is bound to make
errors, since some values on the decision axis
are ambiguous as to the stimulus that gave rise
to them.

SDT proposes that the observer decides on
the response to any stimulus on the basis of
whether the LR on a given trial exceeds the
threshold or not. Decision threshold h1 in
Figure 1b is located right in the middle
between the two distributions. At this point
where x 5 5, the likelihoods of S1 and S2 are
equal, so their ratio is 1. That way, the number
of correct S1 identifications and the number of
correct S2 identifications are equal; the same
holds true for the number of incorrect
responses to either S1 or S2. A decision
threshold of b 5 1 maximizes overall accuracy
(the total fraction of correct responses)
without bias for either S1 or S2. Hence, a
threshold of b 5 1 is called neutral or
unbiased (h1 in Figure 1b).

In most signal detection tasks, this neutral
decision threshold is also optimal in the sense
that it maximizes payoff; that is, receiving the
maximum value (from correct responses)
while paying the minimum cost (from incor-

Fig. 1. Illustration of signal detection theoretical
concepts. (a) Payoff matrix denoting the outcomes of
two possible actions, R1 and R2, in two possible conditions,
presence of stimulus S1 and presence of stimulus S2. (b)
Presentations of S1 and S2 are hypothesized to yield values
on an internal decision variable. The observer is assumed
to decide which of the two stimuli is present on the basis of
an internal decision criterion h, of which two examples
are shown.
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rect responses). However, this equality holds
only under some specific conditions, such as
when the two types of correct responses are
equally reinforced, and the two types of errors
are equally punished, and both types of signal
are presented equally often. The optimal
decision threshold bopt is given by

bopt~
(VR1jS1

zCR2jS1
)|p(S1)

(VR2jS2
zCR1jS2

)|p(S2)
ð2Þ

where p(S1) and p(S2) are stimulus presentation
probabilities of S1 and S2, respectively, and add
to 1.

Instead of b, the location of an observer’s
threshold can be expressed in units of the
decision variable. The criterion measure c is
related to b by the following equation:

ln b~d 0c ð3Þ

where d9 is the difference between the means
of the two distributions, divided by their
common standard deviation (MacMillan &
Creelman, 2005). A neutral criterion at b 5 1
thus translates to c 5 0. Accordingly, c can be
viewed as the distance of the observed decision
criterion from a neutral criterion (in Fig-
ure 1b, the threshold at h2 corresponds to a c
of about 1.3).

With Equation 2, SDT provides a bench-
mark to evaluate performance of a human or
animal subject to optimal performance: the
ideal observer. The ideal observer is a hypo-
thetical entity with full knowledge of the
stimulus distributions and the values and costs
of each possible outcome who places the
decision criterion as to maximize a certain
decision goal (for our present purposes, this
goal is to maximize the total number of
attained reinforcers, i.e., expected value).

So far we have considered a balanced payoff
matrix: In that case, the numerator and
denominator of Equation 2 are equal (assum-
ing equal stimulus presentation probabilities),
thus b equals 1 and c equals 0. Now consider a
case in which correct S1 responses yield
considerably more reinforcement than correct
S2 responses, that is, VR1|S1 & VR2|S2, with costs
identical for both kinds of incorrect responses.
In this case, it is desirable to increase the
number of correct S1 responses by moving the
decision criterion (e.g., to position h2 in
Figure 1b). However, this invariably yields a

smaller number of correct S2 responses, and
thereby even less reinforcement for correct S2

responses in absolute terms. Using decision
criterion h2 yields almost no errors when S1 is
presented, but more than 50% errors when S2

is presented. Equation 2 allows us to deter-
mine the likelihood ratio, and thus the
location of the decision criterion that is
statistically optimal to maximize payoff.

Signal detection theory makes some strong
assumptions. For example, SDT is limited to
the case of the ‘‘signal specified exactly’’,
meaning that the nature of the signal, the
exact time point of signal occurrence, and the
payoff matrix are known to the subject (Stütt-
gen & Schwarz, 2008; Swets, 1961). While these
constraints can be (and frequently are) real-
ized in the laboratory, natural environments
are inherently more uncertain. The exact time
point, nature, and chance of occurrence of
biologically relevant signals such as the sight or
sound of a predator are usually not known,
and neither is the payoff matrix. Moreover, the
payoff matrix of a foraging animal is not
stationary over time: some food patches may
be unexpectedly pilfered, potential mating
partners may have changed territories. Accord-
ingly, animals need to be sensitive to changes
in payoff matrices in order to readily adapt
their behavior for the maximization of rein-
forcement. We therefore wondered how ani-
mals, when confronted with a signal discrim-
ination problem, adapt to changes in payoff
matrices. Although many previous psychophys-
ical studies have manipulated payoff matrices
across blocks of experimental sessions (e.g.,
Alsop & Porritt, 2006; Davison & McCarthy,
1980; Harnett, McCarthy, & Davison, 1984;
McCarthy & Davison, 1979; McCarthy &
Davison, 1980; McCarthy & Davison, 1984;
Nevin, Olson, Mandell, & Yarensky, 1975),
usually only steady-state data are reported, that
is, performance after the animal has fully
adapted its behavior to the changed reinforce-
ment contingencies. Although many studies
find that animals behave optimally defined in
the sense above (i.e., adopt the decision
criterion which maximizes reinforcement; see
for example Feng, Holmes, Rorie, & Newsome,
2009; Lea, 1979; Pyke et al., 1977), little is
known about the adaptation process after
changes in reinforcement contingency, at least
for conditional discrimination tasks. However,
such data are of interest because reinforcers
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affect behavior on a timescale that is not
captured by analyses focusing on steady-state
behavior, and studies employing concurrent
variable-interval (VI) schedules point to the
usefulness of analyzing behavioral adaptations
to changed reinforcement contingencies on a
smaller timescale (e.g., Dreyfus, 1991; Gallistel,
Mark, King, & Latham, 2001; Gallistel et al.,
2007; Mark & Gallistel, 1994; Mazur, 1995; see
Baum, 2010 for review).

We subjected pigeons to a perceptual
categorization task with six different stimuli
(shades of gray), in which three of the stimuli
had to be classified as ‘‘dark’’ and ‘‘light’’,
respectively. We obtained psychometric func-
tions for each session, and varied contingency
of reinforcement across blocks of experimen-
tal sessions. The payoff matrix was manipulat-
ed such that the probabilities of reinforcement
for correct dark and light responses were
asymmetrical, varying between .2 and .6. We
observed the resultant biases in choice behav-
ior and fitted a SDT-based model to the data.
We found that the data of all subjects were well
described by a model in which an observer
shifts an internal decision criterion to maxi-
mize payoff, with stimulus distributions un-
changed across the entire experiment. After
several sessions of exposure to the novel
contingencies, performance closely ap-
proached optimality within this framework.

METHOD

Subjects

Six pigeons (Columba livia), obtained from
local breeders and raised in the institute’s
aviary, served as subjects. Animals were
housed individually in wire-mesh cages inside
a colony room with a 12-hr dark–light cycle
(lights off at 8 p.m.). Water was available at all
times, food was restricted to the period of
daily testing on workdays, with additional free
food available on weekends. During the
experiment, the pigeons were maintained at
80–85% of their free-feeding weight. Four of
the pigeons were experimentally naive, and 2
others had several months experience on a
simple choice task. All subjects were kept and
treated according to the German guidelines
for the care and use of animals in neurosci-
ence, and the research was approved by a
national committee of the State of North
Rhine-Westphalia, Germany.

Apparatus

Testing was conducted in an operant cham-
ber. All hardware was controlled by custom-
written Matlab code (The Mathworks, Natick,
MA; the code is published in Rose, Otto, &
Dittrich, 2008). The operant chamber mea-
sured 34 cm by 34 cm by 50 cm. On the back
wall of the chamber were three translucent
response keys (4 cm by 3 cm, bottom height
from the floor 19, 20, and 19 cm, required
force for activation approximately 25 grams)
which could be transilluminated by a flat-
screen monitor (ACER AL 1511) mounted
against the back wall of the experimental
chamber. Each effective key peck produced a
feedback click. Food (grain) was provided by a
food hopper located below the center key. The
chamber was housed in a sound-attenuating
shell. White noise was provided at all times to
mask extraneous sounds. Sample stimuli were
six shades of gray (grayscale values 110, 140,
170, 190, 220, 250, corresponding to illumi-
nances of 22, 35, 49, 59, 76, and 98 lux,
respectively). In the following, stimuli with
grayscale values of 110, 140, and 170 will be
referred to as S1 or dark, and stimuli with
grayscale values of 190, 220, and 250 will be
referred to as S2 or light. Because the precise
illuminance values do not matter in this study,
we plot behavioral results as a function of gray
value rather than illuminance.

Procedure

Figure 2 illustrates the paradigm. At the
beginning of each trial, the center key was
transilluminated green (initial stimulus), and
an alerting sound (1 KHz) was played for 1 s. If
the pigeon did not peck within 5 s after initial
stimulus onset, the trial was terminated and
counted as an ‘‘initialization omission’’. Omit-
ted trials were not repeated. Following a single
peck on the center key, the sample stimulus
was presented for 1 s. Immediately after
sample stimulus offset, the center key was
again transilluminated green, and another
peck was required to turn off the center key
and, at the same time, turn on the lateral
choice keys. The latter requirement was
introduced to make sure that pigeons keep
their head in front of the sample key for the
whole second of sample presentation in order
to prevent the pigeons from moving to the
choice keys before the sample stimulus termi-
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nated. The two side (choice) keys were
transilluminated orange. If the animal classi-
fied a sample stimulus correctly as either light
(left choice key) or dark (right choice key),
the food hopper was illuminated for 2 s, and,
according to a probabilistic schedule, provided
2 s of food access. In case of an incorrect
response, all houselights were turned off for
2 s. Stimuli were presented in pseudorandom
sequence: A set containing each stimulus type
twice was shuffled and presented. This proce-
dure was conducted 25 times, resulting in 300
trials per session. Only trials containing pecks
on either choice key entered the analysis.
Sessions were conducted daily, usually 5 days
per week, and lasted about 45 min each (only
one session per day).

Reinforcement probability was the main
independent variable in this study. Initially,
correct light and dark responses were rein-
forced with equal probability (gradually de-
creasing from 1 to .5) to assess baseline
performance. After performance had stabi-
lized, the pigeons were exposed to asymmetri-
cal reinforcement probabilities (.6 vs. .3, with
half of the animals first being exposed to a S1/
dark-favoring reinforcement schedule of .6 vs.
.3, the other half to a S2/light-favoring
reinforcement schedule of .3 vs. .6). Thereaf-
ter, biases were switched to .6 versus .2, .2
versus .6, .3 versus .6, and finally again .5 versus
.5. Each novel contingency always favored the
previously less favorable response. Each asym-
metrical reinforcement schedule was main-
tained for an average of 14.7 consecutive
sessions (median: 14.5, minimum: 10, maxi-
mum: 22). Table 1 provides descriptive statis-
tics on each animal’s experimental schedule.
All analyses were done in MATLAB 7.8.0.

RESULTS

The results will be presented in four steps.
First, we demonstrate the effect of varying
reinforcement contingencies by analyzing
steady-state behavior (i.e., averaged over the
last five sessions of each condition). Second,
we show that responses exhibit a biphasic
adjustment process following changes in rein-
forcement contingency by focusing on individ-
ual sessions early in a condition. Third, we
develop a SDT-based model that provides an
estimate of optimal choice allocation. This
estimate serves as a benchmark against which
to evaluate each bird’s performance. Last, we
analyze the data in the framework of the
generalized matching law.

Steady-State Behavior

Introduction of asymmetrical reinforcement
probabilities strongly affected the pigeons’
choice allocation. Figure 3 shows psychomet-
ric functions (proportion of left choices per
stimulus) for individual birds, averaged across
the last five sessions of each of six conditions.
With few exceptions, reinforcement schedules
favoring S2 (solid squares and triangles)
resulted in higher proportions of left choices,
and reinforcement schedules favoring S1

(open squares and triangles) resulted in lower
proportions of left choices. For some birds, the

Fig. 2. Schematic of the behavioral paradigm. Se-
quence of events runs from top to bottom, boxes represent
three pecking keys arranged next to each other. After an
intertrial interval (ITI) of 4 s, the center key is illuminated
green. After a single peck, the center key displays one of
six possible sample stimuli (shades of gray) for 1 s. Then,
the center key turns green again. After a single peck, the
center key is turned off, and the side keys are illuminated
orange. The subject has to indicate its decision by pecking
either choice key once. If correct, a food hopper is
activated for 2 s according to a probabilistic schedule (see
Method). If incorrect, all lights are switched off for
2 s (time-out).
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Table 1

Descriptive statistics for individual pigeons.

pigeon

720 810 919 920 935 947

no. of sessions in
analysis

79 79 80 80 76 87

Completed
trials per
session
(mean, range)

295 (221–300) 282 (154–300) 296 (235–300) 294 (212–300) 293 (203–300) 282 (181–300)

% correct per
session
(mean, range)

85 (58–94) 71 (49–91) 84 (63–93) 85 (67–94) 78 (55–91) 79 (55–90)

sessions eliminated
(.50%
omissions)

0 1 0 0 0 4

order of
contingencies
[S1, S2]and
number of test
sessions for
each
contingency

.5|.5 6 .5|.5 6 .5|.5 7 .5|.5 7 .5|.5 7 .5|.5 10

.3|.6 12 .3|.6 11 .3|.6 12 .6|.3 12 .6|.3 16 .6|.3 17

.6|.2 18 .6|.2 12 .6|.2 17 .2|.6 12 .2|.6 13 .2|.6 19

.2|.6 16 .2|.6 13 .2|.6 15 .6|.2 15 .6|.2 18 .6|.2 18

.6|.3 14 .6|.3 22 .6|.3 15 .3|.6 13 .3|.6 10 .3|.6 13

.5|.5 13 .5|.5 15 .5|.5 14 .5|.5 21 .5|.5 12 .5|.5 11

mean
(median)
goodness-
of-fit (r2) for
psychometric
function1

0.997 (0.999) 0.972 (0.989) 0.993 (0.996) 0.995 (0.998) 0.989 (0.995) 0.989 (0.991)

correlation of
thresholds and
slopes of
psychometric
functions1

0.394 0.499 0.404 0.529 0.653 0.259

deviation from
optimal
criterion

.5|.5 20.027 .5|.5 20.017 .5|.5 20.077 .5|.5 20.205 .5|.5 20.458 .5|.5 0.127

.3|.6 20.22 .3|.6 20.45 .3|.6 0.021 .3|.6 20.123 .3|.6 20.271 .3|.6 0.064

.6|.3 20.198 .6|.3 0.179 .6|.3 20.061 .6|.3 0.091 .6|.3 20.272 .6|.3 0.012

.2|.6 0.19 .2|.6 21.512 .2|.6 0.106 .2|.6 20.104 .2|.6 20.307 .2|.6 0.054

.6|.2 20.219 .6|.2 1.485 .6|.2 20.19 .6|.2 20.115 .6|.2 .6|.2 20.22
generalized

matching
equations and
r2 across all
sessions

0.488x 2 0.093 0.943x + 0.055 0.47x + 0.001 0.485x 2 0.053 0.603x + 0.204 0.632x + 0.043
r250.866 r250.808 r250.874 r250.879 r250.932 r250.888

generalized
matching
equations and
r2 for the first
5 sessions of a
condition

0.613x 2 0.110 0.946x 2 0.227 0.581x 2 0.034 0.604x 2 0.028 0.621x 2 0.213 0.791x + 0.080
r250.956 r250.921 r250.944 r250.943 r250.964 r250.963

generalized
matching
equations and
r2 for the last
five sessions of
a condition

0.334x 2 0.046 1.004x + 0.072 0.358x + 0.011 0.354x 2 0.061 0.460x 2 0.135 0.384x 2 0.018
r250.814 r250.977 r250.871 r250.943 r250.957 r250.882

maximum
(minimum)
beta

12.18 (0.06) 6.56 (0.07) 16.21 (0.06) 17.89 (0.09) 7.39 (0.06) 14.88 (0.05)

1 Computations included only values from functions with fitted thresholds between 100 and 260, thus excluding cases
where exclusive choice was observed. This applies to 29 out of 79 sessions from pigeon 810, 4 out of 76 sessions from
pigeon 935, and 6 out of 88 sessions from pigeon 947.
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more extreme reinforcement contingencies (.6
vs. .2, triangles) resulted in more extreme shifts
of response proportions than the less extreme
contingencies (.6 vs. .3, squares; see, for
example, Bird 935). Bird 810 is an extreme
case: Here, the more extreme contingencies
resulted in exclusive choice of the response
with higher reinforcement probability. This

general pattern is also visible in the group data,
shown in Figure 4. The effect of reinforcement
contingency on choice allocation is greatest for
stimuli 170 and 190, which were closest to the
category boundary (180; compare the variabil-
ity for stimuli 170 and 190 across conditions to
that of 110 and 250), as described previously by
Davison and McCarthy (1989).

Fig. 3. Mean proportion of left choice responses for the last five sessions of each contingency for individual birds. For
the .5|.5 condition, filled circles represent first block, open circles represent last block of experiment.
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Response Changes Following Variations in
Reinforcement Contingency

To visualize the dynamics of choice, the
psychometric function of each session was
fitted with a cumulative Gaussian distribution,
with the mean of the function representing
threshold and its standard deviation repre-
senting slope (that way, larger standard devi-
ation implies shallower slope). Goodness of fit
was excellent for nearly all sessions from all
birds, with the exception of Bird 810, whose
near-exclusive preference in 29 out of 79
sessions prohibited a reasonable fit (see
Table 1 for more details).

Figure 5 summarizes the dynamics of choice
as changes in psychometric thresholds and
slopes across all sessions. The general pattern
is that, after the introduction of a new
asymmetrical contingency of reinforcement,
thresholds rapidly shifted away from the
favored stimulus category, implying a larger
number of correct responses for that category
and, correspondingly, a smaller number of
correct responses for the other. Subsequently,
thresholds gradually reapproached the catego-
ry boundary (gray horizontal line). This
biphasic pattern of adaptation was particularly
pronounced in Birds 919, 920, and 947, but
showed up as well in at least two conditions in
Birds 720 and 935, with Bird 810 again being
the exception (but see condition .6|.3).

Changes in the contingency of reinforce-
ment affected both threshold and slope of the
psychometric functions. In fact, thresholds
and slopes were positively correlated across
all sessions for all animals (see Table 1), with

correlations ranging from .26 (Bird 947) to .65
(Bird 935), and an average correlation of .46.
This implies a decrease in sensitivity (slope) as
threshold increases towards brighter values—
in terms of detection theory, d9 between
neighboring pairs of stimuli decreases with
increasing luminance. An interdependence of
threshold and slope across different levels of
bias induction was previously demonstrated by
Davison and McCarthy (1989) in a color
discrimination task. They explained the in-
crease in slope with increasing threshold by
enhanced sensitivity to wavelength differences
when wavelengths become longer (in terms of
detection theory, this implies that d9 for a
given wavelength difference increases with
wavelength).

The biphasic adaptation pattern is also
visible in group data. Figure 6 plots choice
allocation for the first 10 sessions after the
introduction of a new reinforcement contin-
gency, separately for each condition. Clearly,
changes in choice allocation are more pro-
nounced for the more extreme reinforcement
contingencies.

Comparison to Ideal Observer Performance

Shifting the decision criterion in a signal
detection or discrimination task from a neutral
location can be beneficial when the payoff
matrix is asymmetrical (see Introduction).
Exact placement of the optimal decision
criterion depends on the ratio of reinforce-
ment for the two alternatives and can be
derived from a SDT-based model fitted to
individual birds’ data.

The model fits choice probabilities as arising
from six Gaussian distributions on a single
decision axis with a variable decision criterion.
Decision axis, stimulus location, and criterion
location are scaled in units of standard
deviations (z-scores). The relative locations of
these distributions are modeled separately for
each animal, and the decision criterion could
assume a different value in each session.
Accordingly, differences in the fraction of left
responses can only arise from session-wise
variations in the decision criterion. The model
is explained in more detail in the Appendix.

Figure 7 plots the results of the modeling
exercise. For each bird, the left panel shows
the relative locations of the six stimulus
distributions on the decision axis, superim-
posed on histograms which depict the fre-

Fig. 4. Mean proportion of left choice responses for
the last five sessions of each contingency, averaged over all
birds. Conventions as in Figure 3.
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Fig. 5. Changes in threshold and slope across experimental sessions for individual birds. Lines are broken for birds
810, 935, and 947; data for these sessions could not be fitted reasonably well (r2 , .65), and the corresponding data
points have been omitted. Vertical gray lines denote changes in reinforcement contingency. Pairs of numbers in the plot
indicate reinforcement probabilities for correct responses within one block (S1 and S2). The first and last blocks provided
equal probabilities of reinforcement (.5) for both stimulus categories. Thin horizontal dotted lines denote
unbiased responding.
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quency distribution of criterion values for each
bird’s data. In general, criterion values were
unimodally distributed, with most values close
to 0 (the unbiased criterion, at which response
probabilities are equal). Again, Bird 810 marks
an exception: The histogram shows three
modes, one at 0, the other two at the extremes
of the distribution. It is important to note that
the values of the decision criterion and the z-
scores are bounded by correcting response
ratios of 0 and 1. Such a correction is
inevitable with a finite number of stimulus
presentations (see Appendix).

Nonetheless, this boundary did not signifi-
cantly degrade the model’s fit to the data. The
right panels of Figure 7 show the correlation
between the empirically obtained choice prob-
abilities on the abscissa and choice probabilities
reconstructed from the model on the ordinate,
both expressed as z-scores. The model ex-
plained a large portion of the variance in the
data: even for Bird 810, r2 amounted to .84, and
the maximum r2 was .94 for Bird 920.

Assuming the validity of the model, we may
now compare the criterion values fitted to the
birds’ response ratios to those of an ideal
observer with the same sensitivity as the
pigeons (working with the same internal
distributions on the decision axis), but the
optimal decision criterion value for each
contingency of reinforcement. This was done
as follows: The decision criterion was varied

from 25 to +5 in steps of 0.1, and the fraction
of correct responses for each stimulus was
calculated and multiplied with the reinforce-
ment probability for the respective category of
that stimulus for each criterion value. These
six products, probability of a correct response
3 probability of reinforcement for that re-
sponse, were averaged across stimuli, yielding
the expected number of reinforcers per trial
(i.e., expected value) for each criterion value.
This procedure was repeated for every contin-
gency of reinforcement. We will refer to the
dependence of expected value on decision
criterion placement as the objective reward
function (ORF; see Maddox, 2002; sometimes
these are also called molar feedback functions,
Baum, 1981). To distinguish between the
decision criterion fitted to each bird’s data
and the optimal decision criterion, we will
refer to these two variables as the empirical and
optimal decision criterion, respectively.

Figure 8 illustrates the relation between the
empirical and the optimal decision criteria and
the ORFs for individual birds’ data. Each panel
shows the trajectories of the empirical (bold
line) and optimal (thin line) decision criteria
over sessions. The grayscale background repre-
sents the ORF for each condition (see Figure 9
for another depiction of the ORFs).

The trajectory of the empirical decision
criterion values is highly reminiscent of the
trajectory of the psychometric thresholds (cf.
Figure 5). Comparison of the empirical and
the optimal criterion values shows that, within
each of the four blocks featuring asymmetrical
reinforcement contingencies, the empirical
criterion initially overshoots the optimal value,
and then gradually reapproaches it over the
course of the next few sessions. Relating the
trajectory of the empirical decision criterion to
the ORF shows that the initial overshoot
descends the shallower downward slope of
the function. ‘‘Shallow’’ means that moving
the decision criterion away from the optimum
into this direction by one unit entails a smaller
decrease in expected value than moving the
criterion in the other direction by the same
amount. Accordingly, a change in decision
criterion differently affects the amount of
reinforcers that will be obtained, depending
on the direction of the criterion shift and the
initial position of the criterion.

Figure 9 plots the ORF for the different
reinforcement contingencies for each animal,

Fig. 6. Changes in choice probability across experi-
mental sessions, averaged across all subjects. Error bars
represent the standard error of the mean (SEM).
Conventions as in Figure 4.
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along with the decision criteria averaged over
the last five sessions of each condition. Two
factors can be appreciated. First, the ORF is
highly asymmetrical for conditions with asym-
metrical reinforcement contingencies, with
plateaus on one side of the neutral criterion.
This plateau is more pronounced for condi-
tions with reinforcement probabilities of .6
versus .2. Second, averaged steady-state criteri-
on values are close to the peaks of the ORFs,
even for the latter conditions. An exception is
again Bird 810, whose values approached
optimality in two conditions with probabilities
of .6 versus .3, but failed to do so at the more
extreme conditions due to the bird’s exclusive
preference for one choice option. Mean devi-
ations from optimal performance amounted to
20.09, 20.14, 20.04, 20.26, and +0.07 for
conditions with reinforcement probabilities of
.5|.5, .3|.6, .6|.3, .2|.6, and .6|.2, respectively.
Values for individual birds are given in Table 1.

Despite the variability in criterion values
(Figure 8), the actual variability in reinforce-
ment density (average number of reinforcers
per trial) across sessions was small. Figure 10
plots the ratio of the expected number of
reinforcers per trial with the birds’ recon-
structed criterion values by the expected
number of reinforcers per trial obtained by
the ideal observer as conceptualized in the
SDT model (black line). Even during the
initial overshoot phases after conditions were
changed, the loss of reinforcers rarely exceed-
ed 5–6%, again with the exception of Bird 810,
which showed exclusive preference for the
favorable side in condition .6|.2, and failed to
adapt to the reversed contingency .2|.6.

It is important to realize that the small losses
in reinforcers compared to an ideal observer
are not a result of successful and rapid
adaptation to the optimal decision criterion.
Consider, for example, Bird 810: In Condition
.6|.2, this bird maintained exclusive preference
for the favorable option for four sessions after
contingency reversal (sessions 30–33), thereby
losing all reinforcers which could be obtained
for correct responses to the other options.
Still, this bird attained .90% of reinforcers
compared to optimal performance. This is a
direct consequence of the flatness of the
objective reward function for that contingency
as shown in Figure 9.

Furthermore, it can be shown that the birds
would have been better off not to adapt to novel

contingencies at all: Comparison of the num-
ber of reinforcers obtained by an unbiased
observer (having the same sensory capacity but
maintaining a constant, neutral decision crite-
rion) to those of the ideal observer, shows that
the loss of reinforcers per trial never exceeded
3% (Figure 10, gray solid line).

Matching

Figure 11 shows the ratio of pecks (Pleft/
Pright) and the ratio of reinforcers (Rfleft/
Rfright) as a function of session number for
each bird. This depiction departs from the
familiar visualization of matching, where rein-
forcer ratios are shown on the abscissa and
response ratios on the ordinate, and this helps
to visualize the degree of matching for each
individual session. It can be seen that there
were large fluctuations in both response ratios
and reinforcer ratios. Furthermore, response
ratios consistently undermatched reinforcer
ratios, indicating that the animals worked
considerably more for reinforcers from one
side compared to the other side. However,
there was no apparent trend for the curves to
converge (thus showing matching) after intro-
duction of a new contingency: the birds did
not equate returns (i.e. reinforcer probabili-
ties per emitted response; Revusky, 1963).

Data from all sessions were fitted with the
equation for the generalized matching law
(Baum, 1974):

log (
Pleft

Pright
)~a log (

Rfleft
Rfright

)z log k ð4Þ

where Pleft and Pright are the relative frequencies of
left and right choices, respectively, and Rfleft and
Rfright are the relative frequencies of reinforcers
obtained from left and right responses, respec-
tively. All birds exhibited some degree of under-
matching (range: 0.49 to 0.94; see Table 1 for
complete data). Fitting Equation 4 separately to
data from the first five sessions and the last five
sessions of all contingencies revealed that under-
matching was more pronounced in the last five
sessions (mean slope: 0.48) compared to the first
five sessions (mean slope: 0.69).

DISCUSSION

Several studies have related performance in
signal detection tasks to the matching law (for
example, Alsop & Porritt, 2006; Davison &
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Tustin, 1978; Davison & McCarthy, 1987, 1989;
McCarthy & Davison, 1980). An analysis of our
data in terms of matching revealed that the
animals consistently undermatched; that is,
response ratios were always less extreme than
reinforcement ratios. Undermatching was
more pronounced in the last five sessions of
a condition than in the first five sessions (see
Figure 11 and Table 1). Slopes for the last five

sessions are similar to those found in studies by
McCarthy and Davison, in which animals were
exposed to contingencies for more sessions
than in the present study (McCarthy &
Davison, 1979, 1980).

In conventional matching studies, employ-
ing concurrent VI VI schedules, reinforcement
ratio does not depend on response ratio in any
simple way. If animals emit many more

Fig. 7. Signal-detection-theory-based model applied to the data of each individual pigeon. Left panels show relative
locations of six hypothetical stimulus distributions along an internal decision axis. The order of stimulus distributions on
the decision axis is perfectly correlated with the order of gray values (left to right, dark to bright). Gray histogram shows
distribution of decision criterion values across all sessions as estimated by the model. Right panels show scatterplots of
empirical against theoretical fractions of left key pecks across all stimuli and experimental sessions, along with best fitting
regression lines, regression equations, and goodness of fit (r2).
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responses than they obtain reinforcers, and
switch keys at a high rate, response ratio can
vary over a considerable range without having
a substantial effect over obtained reinforce-
ment ratio, because almost all scheduled
reinforcers are obtained (Herrnstein, 1970;
Stubbs & Pliskoff, 1969). In the categorization
task with probabilistic reinforcement for
correct responses employed in this study,
the situation is entirely different: The alloca-
tion of responses to different choice options
has a direct effect on reinforcement ratio (see
Figure 11). In fact, perfect matching (with a
slope of 1 in Equation 5) is not possible in

our task with asymmetrical reinforcement
contingencies, with the exception of exclusive
preference for one option. It is difficult to see
how the matching framework can account for
the present findings—the biphasic adjust-
ment pattern of criterion overshoot and
eventual approach to the optimal value—
and provide more than a purely descriptive
account of choice dynamics. In the following,
we will discuss our findings in the light of
signal detection theory and extend a decision
theoretic model outlined by Boneau and
Cole (1967) for a Go–NoGo task to our
paradigm.

Fig. 7. Continued.
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The results of our analyses depicted in
Figures 9 and 10 suggest that the pigeons,
after a period of adjustment, distributed their
choices quasioptimally even though this
brought about only a small number of
additional reinforcers. The surprisingly small

changes in payoff that result from compara-
tively large criterion shifts is due to the flatness
of the objective reward functions (Figure 9),
which Green and Swets (1966) took to explain
that observers in a psychophysical task with
asymmetrical payoff matrices stay closer to the

Fig. 8. Modeled criterion dynamics in relation to reinforcement contingencies and criterion-dependent outcomes
for individual birds. Bold lines depict changes in decision criterion experimental sessions, thin solid lines depict optimal
placement of decision criteria. Grayscale background represents the objective reward function (expected reinforcers per
trial, see colorbar) for each block of sessions (pairs of reinforcement probabilities) and each possible criterion.
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unbiased decision criterion (which maximizes
accuracy but, in this case, not expected value)
than the ideal observer. A similar case was put
forward by Maddox (2002). However, here we
observed the exact opposite: At least during
the initial phase of adjustment, criterion values
were considerably more extreme than optimal
values.

A potential reason for this overshoot may be
that the differential choice allocation to
options differing in reinforcement density is

dependent on the discriminability of these
reinforcement densities—in effect, a psycho-
physical problem: the discrimination of mar-
ginally different reinforcement frequencies for
the two options. Assuming a constant differ-
ence limen for discrimination of reinforce-
ment densities across the range depicted in
Figures 8 and 9, the determination of which of
two neighboring criterion values is better is
much harder along the shallower than the
steeper slope of the objective reward function.

Fig. 9. Feedback functions and steady-state criterion placement for individual birds. Each panel depicts five
functions, one for each contingency of reinforcement, relating criterion placement to expected payoff (reinforcers per
trial). Dotted line represents symmetrical reinforcement probabilities, solid gray lines represent conditions favoring S1,
solid black lines represent conditions favoring S2. Dots on each curve depict criterion values averaged over the last five
sessions of each contingency.
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This is consistent with bias being more
extreme for the .6|.2 reinforcement contin-
gencies (Figure 6).

Statistical decision theory holds that ideal
observers adjust their decision criterion in
such a way as to maximize overall expected
value. While the birds indeed approached
optimal behavior defined in that sense, the
finding of relatively constant effective reinforc-
er densities across sessions and contingencies,
despite large changes in response bias, begs

the question of whether it is really overall
expected value that determines choice alloca-
tion. Alternatively, quasioptimal behavior may
arise as a by-product of some other choice
strategy.

To illustrate this point, consider the follow-
ing: in raw numbers, the birds attained
roughly 100 reinforcers per 45-min session.
For a 5% loss, the reinforcement density drops
from about 133 to 127 reinforcers per hour,
corresponding to a drop of overall expected

Fig. 10. Foraging efficiency of individual birds, calculated as the expected total number of reinforcers attained with
criterion values modeled for each bird relative to the expected number of reinforcers attained by an ideal observer (black
line). Gray lines show the expected number of reinforcers attained by an unbiased observer having the same modeled
sensitivity as each bird, divided by the expected number of reinforcers attained by an ideal observer with
identical sensitivity.
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value from 0:�33 to 0:31�66. How quickly could
such a change be detected? The answer
depends on the details of the algorithm that
aggregates relative reinforcement frequencies,
but the problem of change detection can be
illustrated by a simple Bernoulli process.
Assuming a null hypothesis of EVnull50:�33for
event A and a true probability of EVtrue50:31�66,
the null hypothesis can be rejected with 99%
confidence after, on average, 5,368 trials. In
contrast, a drop in expected value from 0.6 to
0.3, as happened in the actual experiment for
a single response option, is detectable within
only 30 trials. This suggests that changes in the
expected value of each response option rather
than changes in overall expected value drive
dynamic choice allocation.

Boneau and Cole (1967) have presented a
model which, with some modifications, may
explain how the animals distribute their
choices. Boneau and Cole noted that, in
contrast to the ideal observer postulated in
signal detection theory, an organism in a
signal detection task cannot know the number
or shape of the stimulus distributions on the
internal decision axis (see Figure 12a, gray
lines). Instead, the animal experiences only
the sum of these distributions (Figure 12a,
bold black line). Still, the animal can learn
that responses to one key are more (or less)
likely to yield reinforcement in the presence of
one stimulus rather than in the presence of
another. For a given perceived stimulus
intensity (a value on the decision axis, here
denoted l), the animal can learn the proba-
bility of reinforcement after S1 and S2 choices.
This corresponds to the probability of p(Rf|S1)
* p(S1|l) if the animal responded with R1 and
p(Rf|S2) * p(S2|l) if the animal responded
with R2. These terms will henceforth be called
‘‘action values’’, since they represent the
probability of reinforcement of an action, R1

or R2, conditional on correct classification of a
perceived stimulus, l. Figure 12b presents R1

and R2 action values as a function of l (black
and gray line, respectively), when the proba-
bility of reinforcement is equal for both types
of correct responses. It is assumed that the
organism always chooses the response which
has the highest action value for a given
perceived stimulus l. In this formulation, the
decision criterion is the point at which both
action values are equal (dotted vertical line).
Figure 12c depicts action values when the

reinforcement probability for correct R1 re-
sponses is twice as high as for correct R2

responses. In this case, the intersection of
action values (the decision criterion) has
moved to the right. Importantly, the decision
criterion in this model—intersection of action
values—is identical to the decision criterion in
classical signal detection theory (see Boneau &
Cole, 1967) and therefore, statistically optimal
in the sense that expected value is maximal at
this point.

To connect this model to the problem of
change detection, consider what happens
when symmetrical reinforcement contingen-
cies (Figure 12b) are replaced by asymmetrical
contingencies (Figure 12c), favoring S1. Ac-
tion values are continuously updated and thus
affected immediately by each outcome; thus,
R2 action value will decrease as the relative rate
of reinforcement for S2 for each possible value
of l drops, and R1 action value will increase.
However, R2 action value would, at first,
decrease only for those values of l experi-
enced after the change of contingency. As-
suming some generalization of action value
along the abscissa (affecting action values for
neighboring l), the decision criterion would
be affected earlier by values of l close to the
criterion than by those further away—a pre-
diction easily amenable to empirical test. The
speed of criterion change depends on param-
eters that have still to be worked out; potential
candidates are learning rate and prediction
error, as used in the Rescorla-Wagner model
(Rescorla & Wagner, 1972).

The Boneau-Cole framework presents a
possible solution to the problem of change
detection: Choice may be driven by action
values instead of overall expected value, as
postulated in SDT. In addition, this model also
makes some interesting and testable predic-
tions: For example, when reinforcement prob-
ability is changed not for an entire response
option, but only for a single stimulus, the
speed of criterion adjustment should be
dependent on the perceptual distance of this
stimulus to the decision criterion. In the
present case, changing reinforcement proba-
bility for gray values of 170 and 190 should
result in a more immediate adaptation than
changing reinforcement for gray values of 110
and 250.

Optimal decision criterion setting is not an
infrequent finding in animal psychophysics
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(e.g. Feng et al., 2009) and other tasks (e.g.
relative risk assessment; Balci, Freestone, &
Gallistel, 2009). A recent study by Rorie, Gao,
McClelland, & Newsome (2010) employed a
perceptual categorization paradigm similar to
ours, in which macaque monkeys were con-
fronted with asymmetrical payoff schedules.
However, these authors changed the reinforce-
ment contingencies randomly across trials
rather than sessions, with the actual contingen-
cy being signaled to the animal by a cue at the
beginning of each trial. Accordingly, these

investigators could not investigate the dynamics
of decision criterion setting as we could with
our blocked design. Interestingly though, a
theoretical analysis of the monkeys’ behavioral
data revealed that the animals tended to use
thresholds biased toward the shallower objec-
tive reward function was more shallow (Feng
et al., 2009). This is identical to our finding that
pigeons initially adjusted their decision criteri-
on beyond the point yielding maximum rein-
forcement, onto the shallower side of the
objective reward surface.

Fig. 11. Response ratios consistently undermatch reinforcer ratios. Panels show the logarithm of ratios of left and
right responses (black lines) and ratios of reinforcers obtained from responding left and right (gray lines). Absolute
values for the latter are consistently larger than for the former, indicating undermatching. Missing data points for Bird
810 result from exclusive preference for one option, precluding the calculation of meaningful ratios.
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Teichert and Ferrara (2010) employed a
task in which monkeys had to categorize the
speed of a moving random dot pattern as
either fast or slow. They embedded a block
with asymmetrical reinforcement contingen-
cies (.600 trials) in two conditions with
symmetrical contingencies (200–400 trials)
in each session. Monkeys overadjusted their
decision criterion such that they chose the
favorable alternative more often than dictated
by optimality. This is identical to our finding
of an initial criterion overshoot (Figure 8). It
is tempting to speculate that Teichert and

Ferrara’s experiment missed the subsequent
reapproach of criterion towards the optimal
value because they restricted measurement in
the biased condition to a single block of trials.
In our experiment, the animals did not
perform quasioptimally until about the eighth
session; accordingly, they required a mini-
mum of about 2,400 trials, which is consider-
ably more than the minimum of 600 trials per
block used in the study by Teichert and
Ferrara.

Previous studies on free operant choice in
which reinforcer ratios were varied either
concentrated on steady-state behavior (see
Introduction), or analyzed behavior for shorter
periods of time, so that they could have missed
the biphasic pattern of adaptation. Corrado,
Sugrue, Seung, and Newsome (2005) subjected
monkeys to a matching task (see also Sugrue,
Corrado, & Newsome, 2004), with reinforce-
ment contingencies changing several times per
session. While the monkeys adjusted rapidly to
the changes, the pattern of adaptation rather
resembled a gradual approach to a new
equilibrium with no evidence of an initial
overshoot. The same holds true for other
studies with similar tasks (Davison & Baum,
2000; Lau & Glimcher, 2005; Mazur, 1995).
Another reason why these authors did not find
the overadaptation effect is that it may become
less pronounced as contingencies are switched
more and more often. The speed of the
adaptation process probably depends on an
animal’s global experience; when changes are
more frequent, adaptation is more rapid
(Dreyfus, 1991; Mark & Gallistel, 1994). In
the dynamic matching tasks mentioned, rein-
forcement contingencies were changed sever-
al times per session, while our pigeons
experienced only five changes in total, with
each reinforcement contingency in effect for
at least two weeks.

We know of no quantitative model that
accounts for the pattern of dynamic choice
allocation we observed. Such a model will have
to account for this effect, as well as for the
speed of choice allocation observed. We take
our results to suggest that overall reinforce-
ment density is unlikely to be the variable
controlling adaptive choice allocation; instead,
choice allocation may be driven by action
values as specified in the Boneau-Cole (1967)
model.

Fig. 12. Outline of decision-theoretic model, based
on Boneau and Cole (1967). (a) Discriminal distributions
(gray lines) for six stimuli equidistant in perceptual space
and their sum (bold black line). (b) S1 and S2 action
values as functions of l when reinforcement probabilities
are equal. (c) S1 and S2 action values as functions of l
when reinforcement probability for S1 is twice as large as
for S2.

CRITERION SETTING IN PERCEPTUAL DECISION MAKING 173



REFERENCES

Alsop, B., & Porritt, M. (2006). Discriminability and
sensitivity to reinforcer magnitude in a detection task.
Journal of the Experimental Analysis of Behavior, 85,
41–56.

Balci, F., Freestone, D., & Gallistel, C. R. (2009). Risk
assessment in man and mouse. Proceedings of the
National Academy of Sciences of the United States of
America, 106, 2459–2463.

Baum, W. M. (1974). On two types of deviation from the
matching law: bias and undermatching. Journal of the
Experimental Analysis of Behavior, 22, 231–242.

Baum, W. M. (1981). Optimization and the matching law
as accounts of instrumental behavior. Journal of the
Experimental Analysis of Behavior, 36, 387–403.

Baum, W. M. (2010). Dynamics of choice: a tutorial.
Journal of the Experimental Analysis of Behavior, 94,
161–174.

Boneau, C. A., & Cole, J. L. (1967). Decision theory, the
pigeon, and the psychophysical function. Psychological
Review, 74, 123–135.

Brown, G. S., & White, K. G. (2005). The optimal
correction for estimating extreme discriminability.
Behavior Research Methods, 37, 436–449.

Corrado, G. S., Sugrue, L. P., Seung, H. S., & Newsome, W.
T. (2005). Linear-nonlinear-Poisson models of pri-
mate choice dynamics. Journal of the Experimental
Analysis of Behavior, 84, 581–617.

Davison, M., & Baum, W. M. (2000). Choice in a variable
environment: Every reinforcer counts. Journal of the
Experimental Analysis of Behavior, 74, 1–24.

Davison, M., & McCarthy, D. (1980). Reinforcement for
errors in a signal-detection procedure. Journal of the
Experimental Analysis of Behavior, 34, 35–47.

Davison, M., & McCarthy, D. (1987). The interaction of
stimulus and reinforcer control in complex temporal
discrimination. Journal of the Experimental Analysis of
Behavior, 48, 97–116.

Davison, M., & McCarthy, D. (1989). Effects of relative
reinforcer frequency on complex color detection.
Journal of the Experimental Analysis of Behavior, 51,
291–315.

Davison, M. C., & Tustin, R. D. (1978). The relation
between the generalized matching law and signal-
detection theory. Journal of the Experimental Analysis of
Behavior, 29, 331–336.

Dreyfus, L. R. (1991). Local shifts in relative reinforcement
rate and time allocation on concurrent schedules.
Journal of Experimental Psychology: Animal Behavior
Processes, 17, 486–502.

Feng, S., Holmes, P., Rorie, A., & Newsome, W. T. (2009).
Can monkeys choose optimally when faced with noisy
stimuli and unequal rewards? PLoS Computational
Biology, 5.

Gallistel, C. R., King, A. P., Gottlieb, D., Balci, F.,
Papachristos, E. B., Szalecki, M., & Carbone, K. S.
(2007). Is matching innate? Journal of the Experimental
Analysis of Behavior, 87, 161–199.

Gallistel, C. R., Mark, T. A., King, A. P., & Latham, P. E.
(2001). The rat approximates an ideal detector of
changes in rates of reward: Implications for the law of
effect. Journal of Experimental Psychology: Animal Behav-
ior Processes, 27, 354–372.

Green, D. M., & Swets, J. A. (1966). Signal detection theory
and psychophysics. New York: Wiley.

Harnett, P., McCarthy, D., & Davison, M. (1984). Delayed
signal-detection, differential reinforcement, and
short-term memory in the pigeon. Journal of the
Experimental Analysis of Behavior, 42, 87–111.

Herrnstein, R. J. (1970). On the law of effect. Journal of the
Experimental Analysis of Behavior, 13, 243–266.

Lau, B., & Glimcher, P. W. (2005). Dynamic response-by-
response models of matching behavior in rhesus
monkeys. Journal of the Experimental Analysis of Behavior,
84, 555–579.

Lea, S. E. G. (1979). Foraging and reinforcement sched-
ules in the pigeon: Optimal and non-optimal aspects
of choice. Animal Behaviour, 27, 875–886.

MacMillan, N. A., & Creelman, C. D. (2005). Detection
theory: a user’s guide. New Jersey: Lawrence Erlbaum
Associates, Inc.

Maddox, W. T. (2002). Toward a unified theory of deci-
sion criterion learning in perceptual categorization.
Journal of the Experimental Analysis of Behavior, 78,
567–595.

Mark, T. A., & Gallistel, C. R. (1994). Kinetics of matching.
Journal of Experimental Psychology: Animal Behavior
Processes, 20, 79–95.

Mazur, J. E. (1995). Development of preference and
spontaneous recovery in choice behavior with con-
current variable-interval schedules. Animal Learning &
Behavior, 23, 93–103.

McCarthy, D., & Davison, M. (1979). Signal probability,
reinforcement and signal-detection. Journal of the
Experimental Analysis of Behavior, 32, 373–386.

McCarthy, D., & Davison, M. (1980). Independence of
sensitivity to relative reinforcement rate and discrim-
inability in signal detection. Journal of the Experimental
Analysis of Behavior, 34, 273–284.

McCarthy, D., & Davison, M. (1984). Isobias and alloiobias
functions in animal psychophysics. Journal of Experi-
mental Psychology: Animal Behavior Processes, 10,
390–409.

Nevin, J. A., Olson, K., Mandell, C., & Yarensky, P. (1975).
Differential reinforcement and signal detection. Jour-
nal of the Experimental Analysis of Behavior, 24, 355–367.

Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977).
Optimal foraging: selective review of theory and tests.
Quarterly Review of Biology, 52, 137–154.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of
Pavlovian conditioning: variations in the effectiveness
of reinforcement and nonreinforcement. In A. H.
Black, & W. F. Prokasy (Eds.), Classical conditioning II:
current research and theory (pp. 64–99). New York:
Appleton-Century-Crofts.

Revusky, S. H. (1963). A relationship between responses per
reinforcement and preference during concurrent VI
VI. Journal of the Experimental Analysis of Behavior, 6, 518.

Rorie, A. E., Gao, J., McClelland, J. L., & Newsome, W. T.
(2010). Integration of sensory and reward informa-
tion during perceptual decision-making in lateral
intraparietal cortex (LIP) of the macaque monkey.
PloS One, 5.

Rose, J., Otto, T., & Dittrich, L. (2008). The Biopsychology-
Toolbox: A free, open-source Matlab-toolbox for the
control of behavioral experiments. Journal of Neurosci-
ence Methods, 175, 104–107.

Stubbs, D. A., & Pliskoff, S. S. (1969). Concurrent
responding with fixed relative rate of reinforcement.
Journal of the Experimental Analysis of Behavior, 12,
887–895.

174 MAIK C. STÜTTGEN et al.
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APPENDIX

Deriving Optimal Response Allocation with a Signal
Detection Model

The effect of asymmetrical reinforcement
contingencies on choice can be examined in
the framework of signal detection theory. As
outlined in the introduction, shifting the
decision criterion in a signal detection or
discrimination task can be beneficial when the
payoff matrix is asymmetrical. The amount by
which the decision criterion should shift to be
optimal depends on the ratio of reinforcement
for the two alternatives (for the two-response
case, the optimal decision rule is given by
equation 2). To determine the effectiveness of
the choice biases observed in our data in a six-
stimulus conditional discrimination task, we
fitted a signal-detection-theory-based model to
the psychometric data of individual birds and
determined the optimal relative choice ratios.

The model assumes the existence of six
Gaussian distributions on a single decision axis
(instead of two distributions as in the standard
SDT case—see Figure 1). The relative loca-
tions of these distributions are fixed for each
animal (assuming that the transformation of
physical illuminance to internal representa-
tion stays constant over the whole experi-
ment), while the decision criterion in each
session was allowed to vary.

The model was fitted to the data as follows:
The fraction of left choices for each stimulus
for all sessions for one animal were converted
to standard scores using the probit function
(the inverse of the cumulative normal distri-
bution), resulting in 6*j values, in which j
denotes the number of sessions for that
animal. Fractions of 0 were corrected by
substituting 1/(2N), where N is the number
of trials for the stimulus (usually 50). Equiva-
lently, fractions of 1 were substituted with 1–1/
(2N) (see Brown and White, 2005, for a
discussion of different corrections for propor-
tions of 0 and 1).

Under the assumption that each stimulus
yields a variable value on an internal decision
variable, and that the variability of the values
for each stimulus is described by a Gaussian
probability density, the conversion of the
fraction of left responses into standard scores
gives the difference of the mean of a stimulus
distribution from the decision criterion. Thus,
a fraction of 0.1 (10% left responses for one
stimulus in one session) yields a score of
21.28, meaning that the mean of the distri-
bution is 1.28 standard scores to the left of the
decision criterion. This way, 90% of the
distribution is to the left of the decision
criterion, 10% is to the right.

In our formulation of SDT, we assume that
the centers of the six stimulus distributions on
the decision axis are fixed throughout the
entire experiment, and the distributions are
assumed to have equal variance. Accordingly,
differences in the fraction of left responses can
only arise from session-wise variations in the
decision criterion. Our SDT-based model tries
to simultaneously find the latent scale values
(i.e., the centers of the distributions) and the
bias (value of the decision criterion) for each
session. We assume that, in each session, the
difference between the mean of a stimulus
distribution and the criterion on the decision
variable in each session is determined by two
parameters: Firstly, the difference of the mean
of a stimulus distribution and a neutral
decision criterion, which applies to all sessions,
and secondly, an additional shift of the
decision criterion that is specific for each
session, but simultaneously applies to all
distributions. In formal terms:

dij ¼ xi þ cj ðA1Þ

where xi denotes the difference of the center
of the distribution of stimulus i (iM{1,2,3,4,5,6})
to a neutral decision criterion, cj denotes the
shift in the decision criterion (bias) in session
j, where j can take integer values from 1 to the
total number of experimental sessions for each
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animal, and dij denotes the difference of the
mean of the distribution of stimulus i to the
decision criterion in session j. We can phrase
the analysis problem as a multiple regression
with dummy variable coding, where, for each of
i*j rows, a variable takes the value of 1 for one of
the six stimuli, and also the value of 1 for the
relevant session, and all other variables take the
value of 0. Accordingly, the decision criterion
values would be the standard scores of the
fraction of left responses for stimulus i in
session j plus the value of the decision criterion
for session j (applied to all six stimuli). In sum,
there are i+j predictor variables and i*j ob-
served values. This results in a linear model in
which the combination of a single stimulus and
a single session predicts the difference of the
decision criterion to that stimulus’ mean in that
single session (Equation 5).

The objective reward functions were calculat-
ed as follows: For each bird’s modeled stimulus

distributions (Figure 7), the decision criterion
was varied from 25 to +5 in steps of 0.1, and the
fraction of correct responses for each stimulus
was calculated for each criterion. This procedure
resulted in a 101 3 6 matrix (101 criterion
values, six associated probabilities for a correct
response, one for each stimulus). Separately for
each condition, each element of the matrix was
multiplied with the reinforcement probability
for the respective category of that stimulus. Each
row of the matrix thus contained six products:
probability of a correct response 3 probability of
reinforcement for that response. These were
averaged across columns (stimuli), yielding the
expected number of reinforcers per trial (i.e.,
expected value) for each criterion value. This
procedure was repeated for every contingency of
reinforcement. The resulting vector with 101
elements constitutes the objective reward surface
—overall expected value for each of 101 possible
criterion values.
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