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Integration of Vibrotactile Signals for Whisker-Related
Perception in Rats Is Governed by Short Time Constants:
Comparison of Neurometric and Psychometric Detection
Performance
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Rats explore environments by sweeping their whiskers across objects and surfaces. Both sensor movement and repetitive sweeping typical for
this behavior require that vibrotactile signals are integrated over time. While temporal integration properties of neurons along the whisker
somatosensory pathway have been studied extensively, the consequences for behavior are unknown. Here, we investigate the ability of head-
fixed rats to integrate information over time for the detection of near-threshold pulsatile deflection sequences applied to a single whisker.
Psychometric detection performance was assessed with whisker stimuli composed of different numbers of pulses (1-31) delivered at varying
frequencies (10, 20, 100 Hz). Detection performance indeed improved with increasing number and frequency of pulses, albeit this improvement
was much lower than predicted by probabilistic combination, suggesting highly sublinear integration of pulses. This behavioral observation was
reflected in the firing properties of concomitantly recorded barrel cortex neurons, which showed substantial response adaptation to repetitive
whisker deflection. To estimate the integration time with which barrel cortex neuronal activity must be read out to match behavior, we con-
structed a model monitoring spiking activity of simulated neuronal pools, where spike trains were channeled through a leaky integrator with
exponential decay. Detection was accomplished by simple threshold crossings. This simple model gave an excellent match of neurometric and
psychometric data at surprisingly small time constants � of 5– 8 ms, thus limiting integration largely to �25 ms. This result carries important
implications regarding sensory processing for whisker-mediated perception.

Introduction
Signal detection performance of human and animal observers
benefits from repetitive activation at perceptual threshold in sev-
eral sensory systems [“temporal summation”; audition: Heil and
Neubauer (2003); Zwislocki (1960); touch: Gescheider et al.
(1999); Verrillo (1965)]. The neural processes underlying this
phenomenon must involve some sort of temporal integration of
incoming signals. Temporal integration can be loosely defined as
an accumulation of evidence over time, and has been shown to
hold close links to perception also in discrimination tasks: for
example, signals ramping up with accumulating sensory evidence
appear downstream of primary sensory areas during perceptual
decision making (Shadlen and Newsome, 1996; Roitman and
Shadlen, 2002).

When rats sweep their whiskers across objects or textures, the
spatial pattern is converted into a high-speed whisker vibration

(the “vibrotactile signal”), whose dynamics are represented faith-
fully by first-order neurons in the trigeminal ganglion (Jones et
al., 2004). Since the vibrotactile signal varies over time, it seems
necessary to perform some sort of temporal integration of signals
to extract features that carry information about the spatial con-
figurations being palpated. For instance, the assessment of spec-
tral parameters of the vibration (e.g., central frequency), shown
to carry texture-specific information (Hipp et al., 2006), requires
such temporal integration of the vibrotactile signal. The same
argument holds for vibrotactile signals composed of identical
pulses delivered at different interpulse intervals, requiring e.g., a
pulse-counting mechanism (Salinas et al., 2000). On the down-
side, temporal integration necessarily involves a loss of the fine-
grained structure of the input.

The type of temporal integration needed to count pulses or to
calculate intensity is some sort of summing the vibrotactile signal
over time. In contrast to this expectation, neurons along the
whisker-related tactile pathway show strong firing rate adapta-
tion with repetitive deflections at frequencies higher than 10 Hz,
indicating highly sublinear temporal integration (Fanselow and
Nicolelis, 1999; Chung et al., 2002; Arabzadeh et al., 2003;
Garabedian et al., 2003; Khatri and Simons, 2004; Sanchez-
Jimenez et al., 2009). Adaptation is strongest in primary somato-
sensory cortex and seems to be at least partly based on the action
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of intracortical inhibitory networks (Butovas and Schwarz, 2003,
2006; Webber and Stanley, 2004). To explain how this feature can
be aligned with the need to integrate the vibrotactile signal, the
behavioral capacity for temporal integration has to be assessed as
a benchmark against which to compare neural firing patterns.
Such data has not been available so far.

To systematically assess how the whisker system makes use of
temporal integration, we asked whether rats’ detection perfor-
mance of near-threshold repetitive whisker deflections (pulses)
varies as a function of pulse number and interpulse interval. In a next
step, we investigated the time constant with which barrel cortex neu-
ronal activity has to be integrated to match the improvement of
detectability observed behaviorally. We found that stages down-
stream of barrel cortex appear to use surprisingly short time con-
stants. This finding provides the basis for the elucidation of temporal
integration for whisker-mediated perception.

Materials and Methods
All experimental and surgical procedures were performed in accordance
with the German Law for the Protection of Animals. Subjects were two
female Sprague Dawley rats (Harlan Winkelmann), aged 12–16 weeks at
the time of implantation.

Rats and surgery. Surgical procedures and the behavioral task have
been described in detail before (Stüttgen et al., 2006; Stüttgen and
Schwarz, 2008). Briefly, the rats were equipped with a dental cement head
mount that was anchored to the skull with stainless steel screws. A
mounting screw turned upside down was placed in the head mount for
later fixation. During head mount surgery, a trepanation over the barrel
cortex was performed. The C1 barrel was located by mapping the cortex
with a single intracerebral electrode. A 2-by-3 multielectrode array (in-
terelectrode distance, �250 –375 mm) was centered over the identified
location of C1 and slowly inserted into the cortex and fixed to the head
mount with dental cement. The wound was treated with antibiotic oint-
ment and sutured. Analgesia and warmth were provided after surgery.
Rats were allowed to recover for at least 14 d before habituation training.
Rats were housed individually and kept under a 12/12 h light/dark cycle
with water and food available ad libitum except during behavioral testing,
when the rats were water-restricted for 5 d per week. Drops in body
weight, monitored daily, were prevented by supplementary water.

Electrophysiology. The movable multielectrode arrays contained glass-
coated, pulled and ground platinum tungsten electrodes (impedance 2– 6
M�; Thomas Recording) manufactured in our laboratory. Electrode
depth could be adjusted by turning a small screw (250 �m per revolu-
tion). After each successful recording session, we lowered the electrode
by a quarter to half revolution. Voltage traces picked up by the electrodes
were bandpass-filtered (200 –5000 Hz) and recorded at a sampling rate of
20 kHz using a multichannel extracellular amplifier (Multi Channel Sys-
tems). Spikes were detected offline using amplitude thresholds. Two-
millisecond cutouts centered on the time bin in which the voltage trace
first traversed the amplitude threshold were recorded and sorted using a
custom-written software package (Hermle et al., 2004). Artifacts were
removed and neurons sorted to yield either single- or multiunit spike
trains (SU and MU, respectively).

Behavioral task and whisker stimulation. Rats were trained on a Go-/
No-Go detection paradigm. The animals’ task was to respond to whisker
deflections occurring on average every 5 s (�2.5 s, uniform distribution)
by licking from a water spout. If they emitted a lick response within 600
ms after stimulus onset (the window of opportunity), they received a
droplet of water as positive reinforcement. To discourage random licking
during the intertrial interval, presentation of a new stimulus was delayed
by 5 s (�2.5 s) in case the rat licked during the prestimulus period.
Premature responses (licks occurring within the first 75 ms of the win-
dow of opportunity) led to trial break-off without reward delivery. Both
premature responses as well as responses to catch trials (see below) led to
mild punishment (presentation of a bright light for 1 s).

Whisker stimuli were delivered using piezoelectric actuators, deflect-
ing the C1 whisker �5 mm from the whisker base. Command voltages

were generated in LabVIEW 8 (National Instruments) and delivered at
100 kHz. Near-threshold stimuli consisted of short pulses fixed in am-
plitude and frequency (100 Hz cosine waves; amplitude was adapted for
each rat such that a single pulse was detected on average in �50% of cases
(rat 1: �70 �m with peak velocity of �25 mm/s in either direction, rat 2:
�30 �m with peak velocity �10 mm/s) (see Fig. 1 for a sketch of the
stimulus waveforms; reference stimuli not to scale). Stimuli differed with
regard to number of pulses (1, 4, or 31) and pulse frequency (10, 20, or
100 Hz). In addition to the five test stimuli (from here on referred to as
1p, 4p10, 4p20, 4p100, and 31p100, with the first number denoting num-
ber of pulses p, and the second number denoting presentation fre-
quency), we included “catch trials” in which no stimulus was presented
but randomly occurring licks were registered to arrive at a measure of
chance performance (i.e., hits without stimulus-guided decisions). To
maintain the animals’ motivation throughout an experimental session
comprising up to 250 trials, we additionally included three suprathresh-
old reference stimuli, consisting of 8, 16, or 32 100 Hz pulses having large
amplitudes (�250 �m) and high velocities (�60 mm/s in both rostral
and caudal directions), delivered at 100 Hz.

Stimulus types were presented in a pseudorandom sequence: the nine
stimulus types—five test stimuli, three reference stimuli and the null
(catch) stimulus—were presented once each in random sequence before
one of them was presented again. Each stimulus was presented for on
average 20 times (range 15–25).

The animals were not explicitly trained not to move their whiskers
during the task. However, previous EMG recordings in a similar task
(Stüttgen et al., 2006) as well as video observation during task perfor-
mance indicated that whisker movements around the time point of stim-
ulus application are almost completely absent.

Modeling. To systematically investigate whether behavioral perfor-
mance could be realized by monitoring the integral of past firing in a
population of neurons, we constructed a model based on Monte-Carlo
simulations of spike trains, with spiking probabilities derived from the 22
single units’ spike trains in our dataset (see Fig. 5 for an outline of the
model). For each neuron and each stimulus type, we first calculated
spiking probability in consecutive 1 ms bins as a function of time as given
by the recorded data (�1000 ms relative to stimulus onset), yielding a
simple peristimulus time histogram for each stimulus for each single
unit, scaled in units of “spike probability” per 1 ms bin. Next, we selected
the m units with the highest signal-to-noise ratio (SNR), where m could
take the values {5,10,20}. A neuron’s SNR was determined by calculating
Glass’s � (see below) for single-pulse spike probabilities relative to spon-
taneous activity. We then constructed neuronal pools that included these
m neurons, with pool sizes taking one of n values, where n always was a
member of the set {5, 10, 20, 40, 100, 200, 500}. We only considered
models in which n was an integer multiple of m (see Fig. 5, “Data base”).
For reasons of mathematical convenience, we took only the 20 most sensitive
neurons from the 22 neurons available. The remaining two neurons were not
qualitatively different from the others in any obvious way.

Figure 1. Schematic illustration of the whisker stimuli. Each stimulus consisted of one
or more pulses delivered at varying frequencies for a variable duration. Each pulse con-
sisted of a single cosine whisker deflection of 100 Hz. Reference stimuli are not drawn to
scale; see methods for detailed stimulus description.
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We constructed a 2-s-long random spike
train for each of the n neurons as given by
the neuron’s peristimulus time histograms
(PSTHs); in cases where n � m, neurons were
cloned to contribute additional random spike
trains. We then summed spike trains over all n
neurons to yield a “population PSTH” for a
single presentation of a stimulus. Thus, popu-
lation PSTH refers to the summed spike counts
of n simulated spike trains, where each spike
train is generated by randomly assigning spikes
to 1 ms bins, where the probability of a spike
occurring in an individual bin is determined by
the respective unit’s original PSTH (see Fig. 5,
“Pooling”). To assess the role of temporal inte-
gration, population PSTHs were convolved with
an exponential decay function (of the form
exp(�t/�), normalized to have an integral of
unity), where t is time and � is the time constant
of the function), with � being a member of the set
{0.2, 0.5, 1, 2, 5, 8, 10, 15, 20, 35, 50} in units of
milliseconds (see Fig. 5, “Integration”).

This procedure was repeated 1000 times,
yielding 1000 filtered population PSTHs for
each stimulus. The model should base its deci-
sion about the presence or absence of a signal
on the peak spike counts in the filtered popu-
lation PSTHs. To arrive at a meaningful crite-
rion, we determined the 54th percentile of peak
spike counts in the population PSTHs to the
single-pulse stimulus between 0 and 200 ms
after stimulus onset. This results in 46% of the
1000 population PSTHs exceeding threshold,
which compares well with the 46% catch-
corrected response rate observed with our rats
(compare Figs. 2a, 5, “Calibration”).

Catch-corrected hit rates were calculated us-
ing the following equation:

HRc,i �
HRi � FA

1 � FA
, (1)

where HRc,i is the catch-corrected hit rate for
stimulus i, HRi is the obtained hit rate for stim-
ulus i, and FA is the false-alarm rate [i.e., re-
sponse rate to the catch stimulus (Blackwell,
1952)]. The reason for applying this formula is
that a fraction of the rats’ responses to near-
threshold stimuli presumably resulted from
“guessing,” i.e., emitting random licks without
the presence of a sensation. This fraction can be
estimated by using the false-alarm rate as
shown in Equation 1. Since we were only inter-
ested to model ‘true’ detections from barrel
cortex neuronal activity, we calibrated the
spiking threshold to the corrected hit rate for
the single pulse stimulus. Similarly, the model’s
fit to the behavioral data was evaluated on the
basis of corrected hit rates, too. However, in a
variation of the modeling exercise we used un-
corrected hit rates and found the results to be
highly similar.

The spiking threshold was applied to the
population PSTHs of all other stimuli. The detection rate for a given
stimulus (or false alarm rate in case of catch) was then equal to the
fraction of PSTHs exceeding the derived threshold (see Fig. 5, “Model
response rates and RT”).

The reaction times of the model were calculated by taking the times at
which the simulated neuronal responses first surpassed the threshold

(“detection time”) within each population PSTH, and then adding to
each detection time all reaction times to the 1p stimulus obtained from
each rat. The resulting reaction time distributions were transformed into
percentiles for comparability to each other and the rats’ distributions.

Importantly, peak spike counts in the population PSTHs were only
extracted for the interval �450 to 	500 ms relative to stimulus onset.

Figure 2. Behavioral results. a, Overall response probability for both rats (left, rat 1; right, rat 2) pooled across all sessions,
plotted with binomial CI95. Each data point is based on 400 –500 trials. Dashed lines above four-pulse stimuli depict performance
expectation based on probability summation (see Results). Gray shading highlights the five test stimuli (see Materials and Meth-
ods). b, Histograms of reaction times for each of the five test stimuli. Broken vertical lines indicate median reaction times. Stimulus
traces superimposed for clarity; reference stimulus trace amplitude not to scale. Left, Data from rat 1; right, data from rat 2. c,
Cumulative frequency distributions of reaction times, separated by stimulus type. Arrows highlight increased frequency of long
reaction times for the four-pulse stimulus at 10 Hz. Left, Data from rat 1; right, data from rat 2.
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This interval was chosen because we reasoned that to emit a response in
the interval 75– 600 ms after stimulus onset (as required in our behav-
ioral paradigm), the sensory event leading to the response had to be
between 75 ms minus the maximum reaction time observed, and 600 ms
minus the minimum reaction time observed. Maximum and minimum
reaction times were taken from actually measured reaction time distri-
butions for the single-pulse stimulus and set to be 525 and 100 ms,
respectively (see also Fig. 2b).

As noted above, this simulation was run using time constants � ranging
from 0.2 to 50 ms. The time constant represents the time it takes a
system’s initial response magnitude to drop to �63% of its maximum at
time 0. After three time constants, the function reaches a value �4% of its
maximum; with five time constants, this number decreases to 1%.

Goodness of fit of response rate distributions (model vs rats) was
evaluated using the coefficient of determination (r 2). To compare the
model’s and the rats’ reaction time distributions, we constructed a “sim-
ilarity index”: first, we reduced every reaction time distributions to its
percentiles. Then, we calculated the percentile-wise difference in reaction
times for each multipulse test stimulus from the single-pulse stimulus
(i.e., 31p100, 4p100, 4p20, 4p10 vs 1p), yielding “difference vectors”
composed of 100 elements each. This was done for both rats and each
model at each value of �. The difference between the rats’ and the model’s
difference vectors was calculated and squared, the four resulting vectors
(measuring dissimilarity) were averaged, and their reciprocal was loga-
rithmized. Thus, larger values of the similarity index indicate higher
similarity of the distributions, with 0 occurring in the case of identity.

Statistics. Statistical analyses used in this study included repeated-
measures ANOVA (rmANOVA), paired t tests, and the construction of
95% confidence intervals (CI95). CI95s were generally constructed from
t-distributions or, in the case of proportions, from binomial distribu-
tions (Clopper–Pearson method).

We used three effect size measures to complement p values (Kline,
2004). Hedge’s g is a widely used effect size indicator that expresses the
difference between the means of two groups in units of the pooled SD, as
follows:

g �
meangroup A � meangroup B

�vargroup A 	 vargroup B

2

. (2)

By convention, values of Hedge’s g of 0.2, 0.5, and 0.8 are regarded as
small, medium, and large, respectively.

For calculating neuronal SNR, we used a variant of Hedge’s g called
Glass’s �. � is identical to g with the exception that the denominator
represents the SD of the control group only (here: spontaneous activity),
rather than a pooled estimate of the SD as in g.

For ANOVA, we used � squared (� 2), computed as follows:

�2 �
SSeffect

SStotal
, (3)

where SSeffect is the sum of squared deviations of all group means from
the grand mean multiplied by the number of observations, and SStotal is
the sum of the squared differences between all individual scores and the
grand mean. � 2 ranges from 0 to 1 and indicates what fraction of the
overall variance of the dependent variable is explained by variation of a
single independent variable. Its interpretation is therefore identical to
that of the coefficient of determination, r 2. By convention, values of 0.1,
0.25, and 0.4 are regarded as small, medium, and large, respectively (Cohen,
1992). A value of 1 indicates that the entire variance in the data is ex-
plained by variations in the independent variable.

All data analyses were performed in MATLAB 7 (The MathWorks).

Results
Behavior
Figure 2a plots detection probability as a function of stimulus
type, separately for each rat. For both rats, response probability
ranged from �0.17 for the catch stimulus to almost 1 for the three
reference stimuli, exemplifying the adequacy of our Go/No-Go
detection task: throughout experimental sessions, rats responded
steadily to suprathreshold reference stimuli, and displayed low
but measurable false alarm rates, such that detectability of near-
threshold stimuli could be reliably assessed.

Inspection of Figure 2a reveals that the rat whisker system is
indeed capable of temporal summation at detection threshold
(shaded area): detection probability increased from the single-
pulse stimulus to four-pulse stimuli to the 31-pulse stimulus, and
did so for both rats by about the same amount (maximally �0.3

Figure 3. PSTHs for three example units recorded from barrel cortex, bin width 1 ms, traces smoothed with a Gaussian kernel of 1.5 ms width (a– c). Right, 200 overlaid example waveforms for
each example unit (scale bar, 400 �V). d, Stimulus waveforms corresponding to PSTH panels are depicted for clarity in the bottom row; reference stimulus not to scale.
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increase in detection probability from sin-
gle pulse to longest pulse train; rat 1: F(4,29)

� 38.7, p � 10�16; rat 2: F(4,29) � 39.3,
p � 10�16, rmANOVA). The observed
pattern of stimulus detectability is highly
consistent across rats – four pulses were
consistently detected better than one
pulse, 31 pulses were consistently better
detected than four pulses (rat 1: t values
from 3.5 to 11.4, all p values �0.005; rat 2:
t values from 2.9 to 10.1, all p values
�0.01; all df � 29).

If each additional pulse in a train con-
veys as much information as the first pulse
[i.e., “probability summation” wherein
detection probability for single pulses
( pdetect_pulse) is constant throughout the
pulse train (Gescheider et al., 1999)], the
resulting detection probability for trains
containing n pulses is given by the
following:

pdetect_train � 1 � (1 � pdetect_pulse)
n.

(4)

Using Equation 4, we calculated the ex-
pected response probability for trains of
four pulses (Fig. 2a, horizontal dashed
lines), and found that the actually ob-
served response rates fell well short of this
expectation for all three stimuli. Another
prediction of probability summation is
that response probabilities for multipulse
stimuli should not depend on the frequency with which they are
applied. The data in Figure 2a are clearly at odds with this predic-
tion as well: both rats detected four pulses delivered at 100 Hz
better than when applied either at 10 Hz or 20 Hz (rat 1: t(29) � 2.4
and 3.9, p values �0.05; rat 2: t(29) � 4.8 and 4.9, p values �10�4).
Response rates to four pulses at 10 Hz and 20 Hz, however, did
not differ significantly from each other (rat 1: t(29) � 1.3, CI95 for
difference: �0.09 to 0.02; rat 2: t(29) � 0.6, CI95 for difference:
�0.04 to 0.08). Also, average response rates to 31 pulses at 100 Hz
were only mildly increased relative to four pulses delivered at the
same frequency (rat 1: 0.12, CI95 for difference: 0.08 to 0.16; rat 2:
0.8, CI95 for difference: 0.04 to 0.13; prediction from probability
summation �0.25 for both rats). Together, these results speak
against the operation of probability summation: increasing the
number of pulses from one to four confers less increase of detect-
ability than expected, and this advantage is dependent on pulse
frequency.

Intuitively, one would expect to see the temporal summation
effect— better detectability for longer pulse trains—also in pro-
longed reaction times. However, since the (uncorrected) re-
sponse rate to the single-pulse stimulus was �55% already, and
the response rate was only mildly increased by applying multi-
pulse stimuli (by �0.1– 0.3), a considerable fraction of the mul-
tipulse responses presumably originated from detection of the
first pulse. Accordingly, only small differences in average reaction
times may be expected. Indeed, reaction time distributions are
hardly affected by stimulus type (Fig. 2b) [Hedge’s g ranging from
0.05 to 0.27 (rat 1) and 0.06 to 0.33 (rat 2), amounting to �50 ms
for all possible differences from the mean of the single-pulse
response time distribution].

However, despite the small effect on the means, cumulative
distributions of reaction times revealed the presence of heavy
tails, which indicate an overrepresentation of long reaction times
for the two long-lasting four-pulse stimuli (duration 160 and 310
ms for four pulses at 20 and 10 Hz, respectively) relative to two
shorter stimuli (single-pulse and 4 pulses at 100 Hz): 90% of
responses were registered within 370 ms (rat 1) and 360 ms (rat 2)
for the single-pulse stimulus and 440 ms (rat 1) and 470 ms (rat 2)
for the four-pulse stimulus at 10 Hz, a difference of 70 and 110
ms, respectively (Fig. 2c) [compare green, yellow, and cyan lines
(4p10 and 4p20, respectively) to red lines (1p)].

In general, reaction times to all stimuli were surprisingly
short, with medians ranging from 200 to 300 ms. Moreover, for
the stimulus showing the strongest temporal summation effect
(31 pulses at 100 Hz, equating a total stimulus duration of 310
ms) �75% of reaction times were �300 ms. This means that
most of the responses were completed before this stimulus was
over. Assuming an average response latency of �250 ms from
registration of a stimulus until the tongue has contacted the spout
(seen with single pulses), this allows the rat to integrate, on aver-
age, over maximally 50 –100 ms before issuing a response. On the
other hand, reaction times permitting integration over the whole
duration of the stimulus (300 ms 	 250 ms response latency)
were virtually absent (463/470, �1.5% of cases for rat 1, 424/428,
�1% of cases for rat 2).

In summary, the behavioral data demonstrate (1) the exis-
tence of temporal summation, (2) a strong attenuation of the
effects of additional pulses relative to the first pulse, (3) the im-
plausibility of a simple probability summation as the mechanism
underlying the summation effect, and (4) a weak temporal inte-

Figure 4. a, Dynamics of adaptation, averaged over all single units (n � 22). Spike probability is plotted for 50 ms windows,
smoothed with a boxcar filter of width � 10 ms (resolution: 1 ms). PSTHs are aligned to onset of each consecutive pulse. Left, Four
pulses at 10 Hz; right, four pulses at 20 Hz. Black dotted line in both panels denotes four pulses at 100 Hz; here, the response to
individual pulses could not be disentangled. b, Adaptation index (AI), computed separately for maximum spike probability and
spike count, shown for both stimuli. c, d, same as a, b, but for multi units (n � 160).
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gration of neuronal responses that is limited to perhaps the initial
50 –100 ms of a stimulus. In the next section, we will analyze
responses recorded from barrel cortex while the rats performed
the detection task.

Neurophysiology
Overall, we recorded a total of 22 single and 160 multi units (rat 1:
9 SU, 73 MU; rat 2: 13 SU, 87 MU; total: 182 units). Figure 3
shows several exemplary units’ peristimulus time histograms
(PSTHs) for the five test stimuli, as well as one reference stimulus
for comparison. Figure 3b shows a single unit which provided a
faithful reproduction of stimulus dynamics (compare the
PSTHs for the two four-pulse stimuli delivered at 10 and 20 Hz
with the stimulus waveforms in Fig. 3d). The multi unit in
Figure 3a showed an excitatory response to stimulus onset
only, while the single unit depicted in Figure 3c was not af-
fected by the stimuli at all.

Qualitative inspection of these example units suggested that,
indeed, subsequent pulses yield attenuated spike responses, con-
cordant with the behavioral result that subsequent pulses pro-
vided only a minor aid in stimulus detection. Accordingly, we
quantified neuronal response adaptation. Figure 4, a and b, plot
adaptation characteristics separately for single and multi units,
respectively. Figure 4, a and c, display average spike probabilities
across single and multi units, respectively, for the four pulses
delivered at 10 and 20 Hz (colored). For comparison purposes,
the black dotted line plots the spike probability for the four pulses
delivered at 100 Hz; since the spike responses to subsequent stim-
uli completely overlapped in this case, it was not possible to dis-
entangle the spike responses in a pulse-wise manner. The plots
reveal that, for both 10 and 20 Hz, responses to subsequent pulses
were reduced. We quantified the amount of reduction using the
adaptation index (AI) used in the study by Khatri et al. (2004). AI
was computed in two ways: first, as the maximum spike proba-
bility within each 25 ms interval following pulse onset normal-
ized to the maximum spike probability for the first pulse; second,
as the integral of the spike probability (i.e., total spike count) in
the same period, normalized in an analogous way. Figure 4, b and

d, presents AI as a function of pulse number across single and
multi units. Both maximum spike probabilities and spike counts
progressively adapted, with the major amount of attenuation be-
ing achieved with the second pulse already. These results are in
both qualitative and quantitative agreement with a previous re-
port using suprathreshold stimuli in anesthetized rats (Khatri et
al., 2004).

As an initial check whether the temporal summation effect
seen in the behavior is mirrored by barrel cortex neuronal activ-
ity, we asked whether total spike count or peak firing rate within
350 ms after stimulus onset was affected by stimulus type across
both single and multi units.

Firing rates were extracted from PSTHs smoothed by a low-
pass Butterworth filter (cutoff frequency, 40 Hz). While both
peak firing rate and total spike count were influenced by stimulus
type, the observed differences between stimuli were extremely
small (� 2 � 0.01 for both spike counts and peak firing rates for
both rats). Also, mean and median spike counts and peak firing
rates did not show the same ranking of stimulus types as that seen
in behavior. In summary, averaged spike counts and peak firing
rates were hardly affected by increasing stimulus duration or
pulse number. In any case, the usage of a 350 ms window for the
measurement of the response is likely to be inappropriate, given
that the rats’ reaction times hinted at integration times way
shorter than 350 ms.

Modeling
To elucidate the mechanisms of temporal integration needed to
match the neuronal sensitivities to that of the rat observers, we
ran a Monte Carlo simulation that used exponential integration
windows (see Fig. 5 for an outline of the modeling procedure and
methods for details). Our model was meant to answer the ques-
tion “how do downstream brain areas integrate barrel cortex sig-
nals to generate a decision about the presence or absence of a
signal?”. We reasoned that these downstream areas integrate bar-
rel cortex output and apply a simple activity threshold to the
resulting signal. To simulate this process, we took our single
units’ PSTHs and scaled it in terms of spike probability as a func-

Figure 5. Outline of the probabilistic model. RT is reaction time. See Materials and Methods for details.
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tion of peristimulus time. Then, we con-
structed pools of 5, 10, 20, 40, or 100
artificial neuron that were composed of
the 5, 10, or 20 most sensitive neurons in
our sample. The reason we varied compo-
sition and size of the pool was to see
whether different pools yield different
best-matching time constants.

Each pool of neurons was presented
with all stimuli, and the spike trains of all
neurons in a pool were summed to gener-
ate a population PSTH, which was subse-
quently convolved with an exponential
kernel with a specific time constant (we
investigated time constants ranging from
0.2 to 50 ms). The model based its deci-
sion to report or not report a signal on
simple threshold crossings of the popula-
tion PSTH.

Figure 6a shows the resulting detection
rate from a simulation with an integration
time constant of � � 5 ms, generated by a
pool composed of the 20 best neurons
with a pool size of 40 (thus, in this combi-
nation, each neuron entered the pool
twice). Comparison with Figure 2a high-
lights the similarity of the model’s re-
sponse rate patterns to that for both rats.
Figure 6b shows this more explicitly by
plotting the model’s against the rats’ re-
sponse rates. For both rats, the match be-
tween model and behavior was excellent
(both r 2 � 0.97).

If performance of the rats was based on
monitoring population spiking activity
over time and issuing a response if detec-
tion ensues, the model should predict the
observed differences in reaction time be-
tween stimuli (Fig. 2c). To test this, we
first determined the model’s “detection
times,” i.e., the time points at which the spike count of each
population PSTH exceeded its threshold. For � � 5 ms, detection
times are plotted in Figure 6c. Detection times were almost exclu-
sively found in the 25 ms bins beginning after pulse onset, with
the first pulse of multipulse series yielding the most detection
times. Intuitively, this concurs with our behavioral observation,
detailed above, that detection was governed largely by the first
pulse in each series. Also, detection time distributions for 4p10
and 4p20 show some additional peaks right after each additional
pulse (Fig. 6c, arrows).

To see whether the model could also successfully account for
the observed reaction time patterns (Fig. 2c), we calculated
“model reaction times.” These were constructed, in simple terms,
by adding the model detection times to the rats’ reaction times to
the single pulse stimulus (see Materials and Methods for details).

Figure 6d shows cumulative model reaction time distribu-
tions, separately for reaction times taken from rat 1 and rat 2. The
overall shape of the distributions resembles those of both rats
rather well (minimum r 2 between percentiles of original and
model distributions across all stimuli: 0.95). Moreover, the
model reproduced the heavy tails of the distributions for two
longest test pulse stimuli [4p10 and 4p20 (arrow); compare to
Fig. 2c].

The match between psychometric and neurometric detection
performance depended strongly on the value of �, as well as the
size but not the composition of the neuronal pool. Figure 7a
shows the range of the 22 single units’ SNR with bootstrapped
95% confidence intervals. Figure 7b shows goodness of fit (r2 cal-
culated between the model’s and the rats’ detection rates (compare
Fig. 6b), averaged across rats) color-coded as a function of the three
parameters. While the composition of the neuronal pool—the
average sensitivity of its constituent neurons— did not have a
marked influence, both pool size and � did: larger time constants
(� � 35 ms) yielded worse fits than smaller ones, and larger pools
(�100 neurons) yielded worse fits than smaller pools.

Since we were mainly interested in temporal integration, we
asked whether there is any range of values for � that explain
behavioral performance well, regardless of a neuronal pool’s size
or composition. Figure 7c (lower panel) plots the frequency of
best � values over all considered models. Strikingly, virtually all
combinations of pool size and pool composition had their opti-
mal � values at either 5 or 8 ms.

To see whether this result holds for reaction times as well, we
calculated a similarity index between the model’s and the rat’s
reaction time distributions (see Materials and Methods). Inspec-
tion of Figure 7d reveals that, again, larger time constants yielded

Figure 6. Model performance with a pool size of 40, composed of the 20 most sensitive neurons, at � � 5 ms. a, Model
detection rate as a function of stimulus type. Gray shading highlights the five test stimuli. b, Scatterplot showing the high
correlation between modeled and observed response rates, separately for rats 1 and 2. Black line represents unity. c, Histograms
showing the temporal distributions of model detection times, separately for each stimulus type. Bin width is 25 ms. Arrows point
at late instances of detection to occur in the time bins right after stimulus delivery. d, Cumulative frequency distributions of model
reaction times, separately for each stimulus type and for reaction times taken from rat 1 (upper panel) and rat 2 (lower panel). Color
code as in c.
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worse matches than short ones, consistently for variations in both
pool size and pool composition. However, the distribution of
optimal � was broader than the one observed with response rate
(Fig. 7c, upper panel, compare with lower panel).

To see which values of � yielded the best fits when response
rate and reaction time were considered simultaneously, we nor-
malized both r 2 and our similarity index, and averaged these
values for each model. Figure 8a reveals that the pattern derived
from the separate consideration of both measures is replicated—
small values of � and smaller neuronal pools yield the best
matches. In addition, we find that each subpanel has a “hot spot”
of goodness of fit at intermediate values of �. As Figure 8b shows,
joint consideration of response rate and reaction time supports
the optimal values of � derived from response rate alone, with the
vast majority of models featuring a � of either 5 or 8 ms. The best
model turned out to be a pool of 40 neurons, composed of the 20
most sensitive units in our sample, at an integration constant of 5
ms. This is the model whose performance is depicted in Figure 6.

Interestingly, virtually all tested models showed considerably
better detection performance than the rat with increasingly

longer time constants, with detection be-
ing almost 100% for most stimuli at time
constants of 50 ms or longer. Thus, long
integration times would actually serve to
improve detection performance.

Together, a model monitoring coinci-
dent spiking in a small pool of neurons in
barrel cortex is sufficient to explain both
detection performance and variations in
reaction time. Examination of different
integration time constants suggests that
rats could base their perceptual decision
on strong but transient bursts of neuronal
activity, integrated using a � of 5– 8 ms.
This conclusion is valid over a vast range
of pooling methods.

Discussion
This study set out to assess psychometric
and neurometric variables to find out if
(and how) the rat’s whisker system inte-
grates vibrotactile signals over time to im-
prove detection. Behaviorally, we found
that rats’ detection benefited from series
of pulses, but the summation was highly
sublinear—far below what would be ex-
pected from statistical independence of
single pulse detection. On the level of the
cortex, neurons showed a highly inte-
grated pattern of activity, with strong re-
sponse to the first pulse and suppressed
responses to the following pulses, with the
degree of suppression depending on fre-
quency. To match neurometric and psy-
chometric performance, barrel cortical
signals needed to be filtered by a leaky,
exponential integrator with a short time
constant of 5– 8 ms, limiting the total in-
tegration time to �25 ms (i.e., 95% of in-
tegration achieved using a time constant
of 8 ms).

A central premise of comparing neuro-
metric and psychometric data is that the
neurometric data are indeed relevant to

execution of the psychophysical task. Hutson and Masterton
(1986) reported the puzzling finding that lesions of the barrel
field in primary somatosensory cortex had virtually no effect on
the rats’ abilities to perform a whisker-mediated vibrotactile dis-
crimination task. This finding poses a problem for every study
investigating the contribution of barrel cortex to whisker-
mediated detection and discrimination abilities. However, there
are some notable differences between their study and ours. These
authors used classical delay-conditioning (“condition suppres-
sion technique”), where the conditioned stimulus (CS; change in
whisker vibration frequency) and unconditioned stimulus (US;
electric shock) are temporally contiguous, whereas we used an
operant trace-conditioning paradigm, where CS (whisker deflec-
tion) and US (water delivery) are separated by a temporal gap,
and the US is only delivered contingent on an operant lick re-
sponse. Trace conditioning is certainly the more demanding task,
as it requires the brain to store the “trace” of the CS until delivery
of the US. In fact, there is ample evidence to indicate that the
brain structures necessary for delay conditioning (mainly cere-

Figure 7. Dependence of model performance on �. a, SNR for 22 single units, ordered from low to high, with bootstrapped CI95
(broken lines). b, Goodness of fit (GOF, measured as r 2) for response rate as a joint function of � and pool size, separately for three
pool compositions (subpanels). c, Frequency distributions of best � values, with all models considered. Upper panel, Reaction time
fits; lower panel, response rate fits. d, Same as b, but for similarity of reaction time distributions. Asterisks denote the overall best
model whose characteristics are depicted in Figure 6.
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bellum) are different from those necessary for trace conditioning
[mainly hippocampus; for example, see the study by Clark and
Squire (1998)]. Also, Galvez et al. (2007) showed that both acqui-
sition and retention of a conditioned response in trace condition-
ing with whisker vibration as the CS require an intact barrel
cortex, albeit this study was done in rabbits. Finally, settling this
issue will require temporary lesions of barrel cortex during the
execution of a detection task.

The behavioral benefit of multiple pulses observed in the
present study was surprisingly small. The difference in detectabil-
ity between a single pulse and 31 pulses delivered at 100 Hz was
�0.3. Concerning temporal integration capacity, the gain in re-
sponse probability of �0.1 between rats’ response rates to 31
versus 4 pulses when both were delivered at 100 Hz speaks for
little impact of stimulus components arriving later than 40 ms
after stimulus onset. Thus, repeated sensory evidence is accumu-
lated in a highly sublinear way, as expressed by the attenuation of
firing rates down to pulse frequencies of 10 Hz, in agreement with
earlier findings in anesthetized animals (Chung et al., 2002;
Garabedian et al., 2003; Khatri et al., 2004; Webber and Stanley,
2004). Sublinear accumulation is contrasted by our finding that

longer integration times in fact would considerably improve de-
tectability. The fact that the whisker system does not seem to
make use of this to improve detectability leads us to the conclu-
sion that it may not be designed to integrate weak signals over
longer time periods for detection. This interpretation is in agree-
ment with previous findings that vigorous responding of trigem-
inal whisker afferents to maintained deflection does not impact
cortical firing (Pinto et al., 2000; Stüttgen and Schwarz, 2008) and
also does not contribute to the animal’s percept (Stüttgen et al.,
2006). In fact, long integration time constants may be of harm for
a system that strives to optimize discrimination, because long
integration time windows blur the temporal aspect of spiking
patterns. Behavioral observation of rats using their whiskers for
navigation in darkness revealed that they touch obstructing ob-
jects just once before they significantly adapt their whisking pat-
tern to take the presence of the detected object into consideration
(Mitchinson et al., 2007). This observation supports the notion
that object detection is typically accomplished using just a single
contact. The neuronal basis for this behavior are extremely short
integration windows yielding highest neurometric sensitivity
(Stüttgen and Schwarz, 2008). Notably, a recent study using
whiskered mobile robots (Fox et al., 2009) found that whisker
vibration signals in the short periods (�50 ms) immediately fol-
lowing whisker-object contact onset and offset carry useful infor-
mation about surface roughness.

The question arises whether the aforementioned processes ap-
ply for discrimination as well. Traditionally, it had been held that
observers accumulate noisy information until sufficient to reach
a decision and commit to a response, and integration times have
originally been considered to be arbitrarily long [vision: Britten et
al. (1992); touch: Hernández et al. (1997); for review, see Gold
and Shadlen (2007)]. However, more recently, visual integration
times have been shown to be optimally matched to behavior
when limited to a few hundred milliseconds (Roitman and
Shadlen, 2002; Kiani et al., 2008; Cohen and Newsome, 2009).
Behavioral observation of whisking rats has revealed that tactile
information is accumulated for rather short periods of time be-
fore committing to a choice. Individual touch durations are mostly
�50 ms, reaching a maximum of 100 ms (von Heimendahl et al.,
2007), with total palpation time (i.e., consecutive whisks) ranging
from �100–700 ms, being highly task-dependent (Carvell and
Simons, 1995). It is intriguing to learn that during typical touch
times as found in the study of von Heimendahl et al. (2007), tempo-
ral frequencies of �10–20 Hz cannot at all be represented in the
vibrotactile signal entering the ascending tactile pathway. Does this
mean that temporal frequencies below this range cannot be discrim-
inated by rats? Not quite. The animals could change whisking speed
to adjust the temporal frequency of incoming vibrotactile signals to a
minimum of 20 Hz. Alternatively, it is certainly possible that the
animals adapt touch times according to the spatiotemporal fre-
quency at hand (Carvell and Simons, 1995).

In light of the behavioral constraints introduced by repetitive
whisking discussed so far, it seems as if an integration time con-
stant of �5– 8 ms (with significant integration up to 25 ms), as
found in the present study, is compatible with the idea that vibro-
tactile signals arriving in barrel cortex are short enough to be
readily integrated. Any two to three spikes arriving within a typ-
ical touch duration of 50 ms in barrel cortex would have a high
chance to get integrated. This relates to a spike frequency of �50
Hz, above which temporal integration would become significant.
As whisker deflections often are responded by maximally one
spike (Stüttgen et al., 2008; Jadhav et al., 2009), we expect that
integration should play a role with pulsatile frequencies �50 Hz.

Figure 8. a, Combined goodness of fit for response rate and reaction time as a function of �,
pool size, and pool composition. Asterisk, Overall best model. b, Frequency distribution of best
� values, with all models considered.
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We hold it possible that the constraints of neuronal integration
found in this study using a detection task may govern discrimi-
nation using active whisking as well. We hypothesize that the
short time constant found in the present study acts to integrate
the neuronal activity related to short strips of vibrotactile signals
coming in with repetitive whisker strokes.

This view assigns a functional role for the strong suppression
to repetitive pulsatile stimulation found here and in earlier work,
which—at least partly—may be due to inhibitory processes last-
ing �100 ms after a volley of cortical activation (Butovas and
Schwarz, 2003; Butovas et al., 2006, Stüttgen and Schwarz, 2008;
but see Chung et al., 2002). This response pattern may be tuned to
the timing of chunks of vibrotactile signals [e.g., stick-slip events,
instances of high acceleration in the vibrotactile signal brought
about by interplay of surface and whisker mechanics (Arabzadeh
et al., 2005; Wolfe et al., 2008; Ritt et al., 2008)] coming in at the
rhythm of sequential whisker strokes. One study reported that,
indeed, rats use repetitive whisking against a texture to reach a
decision, mostly 1–3 consecutive whisks (von Heimendahl et al.,
2007). Assuming a whisking frequency of �7 Hz and touch times
of 50 ms per single whisk (von Heimendahl et al., 2007) these
strips of data would be integrated using the short time constant
found in the present study and then separated by �100 ms to the
next touch time by suppression of signal flow in barrel cortex. In
future studies it has to be worked out whether neuronal activity
generated by active whisking (Fanselow and Nicolelis, 1999;
Hentschke et al., 2006) may recruit memory systems, not avail-
able to our passively detecting rats, that in addition integrates
information acquired across repetitive whisker strokes.

References
Arabzadeh E, Petersen RS, Diamond ME (2003) Encoding of whisker vibra-

tion by rat barrel cortex neurons: implications for texture discrimination.
J Neurosci 23:9146 –9154.

Arabzadeh E, Zorzin E, Diamond ME (2005) Neuronal encoding of texture
in the whisker sensory pathway. PLoS Biol 3:e17.

Blackwell HR (1952) Studies of psychophysical methods for measuring vi-
sual thresholds. J Opt Soc Am 42:606 – 616.

Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis
of visual motion: a comparison of neuronal and psychophysical perfor-
mance. J Neurosci 12:4745– 4765.

Butovas S, Schwarz C (2003) Spatiotemporal effects of microstimulation in
rat neocortex: a parametric study using multielectrode recordings. J Neu-
rophysiol 90:3024 –3039.

Butovas S, Hormuzdi SG, Monyer H, Schwarz C (2006) Effects of electri-
cally coupled inhibitory networks on local neuronal responses to intra-
cortical microstimulation. J Neurophysiol 96:1227–1236.

Carvell GE, Simons DJ (1995) Task- and subject-related differences in sen-
sorimotor behavior during active touch. Somatosens Mot Res 12:1–9.

Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical
synapses contributes to rapid adaptation of cortical sensory responses in
vivo. Neuron 34:437– 446.

Clark RE, Squire LR (1998) Classical conditioning and brain systems: the
role of awareness. Science 280:77– 81.

Cohen J (1992) A power primer. Psychological Bulletin 112: 155–159.
Cohen MR, Newsome WT (2009) Estimates of the contribution of single

neurons to perception depend on timescale and noise correlation. J Neu-
rosci 29:6635– 6648.

Fanselow EE, Nicolelis MA (1999) Behavioral modulation of tactile re-
sponses in the rat somatosensory system. J Neurosci 19:7603–7616.

Fox CW, Mitchinson B, Pearson MJ, Pipe AG, Prescott TJ (2009) Contact
type dependency of texture classification in a whiskered mobile robot.
Auton Robot 26:223.

Galvez R, Weible AP, Disterhoft JF (2007) Cortical barrel lesions impair
whisker-CS trace eyeblink conditioning. Learn Mem 14:94 –100.

Garabedian CE, Jones SR, Merzenich MM, Dale A, Moore CI (2003) Band-
pass response properties of rat SI neurons. J Neurophysiol 90:1379 –1391.

Gescheider GA, Berryhill ME, Verrillo RT, Bolanowski SJ (1999) Vibrotac-
tile temporal summation: probability summation or neural integration?
Somatosens Mot Res 16:229 –242.

Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev
Neurosci 30:535–574.

Heil P, Neubauer H (2003) A unifying basis of auditory thresholds based on
temporal summation. Proc Natl Acad Sci U S A 100:6151– 6156.

Hentschke H, Haiss F, Schwarz C (2006) Central signals rapidly switch tac-
tile processing in rat barrel cortex during whisker movements. Cereb
Cortex 16:1142–1156.

Hermle T, Schwarz C, Bogdan M (2004) Employing ICA and SOM for spike
sorting of multielectrode recordings from CNS. J Physiol Paris
98:349 –356.

Hernández A, Salinas E, García R, Romo R (1997) Discrimination in the
sense of flutter: New psychophysical measurements in monkeys. J Neu-
rosci 17:6391– 6400.

Hipp J, Arabzadeh E, Zorzin E, Conradt J, Kayser C, Diamond ME, König P
(2006) Texture signals in whisker vibrations. J Neurophysiol 95:1792–
1799.

Hutson KA, Masterton RB (1986) The sensory contribution of a single
vibrissa’s cortical barrel. J Neurophysiol 56:1196 –1223.

Jadhav SP, Wolfe J, Feldman DE (2009) Sparse temporal coding of elemen-
tary tactile features during active whisker sensation. Nat Neurosci
12:792– 800.

Jones LM, Lee S, Trageser JC, Simons DJ, Keller A (2004) Precise temporal
responses in whisker trigeminal neurons. J Neurophysiol 92:665– 668.

Khatri V, Hartings JA, Simons DJ (2004) Adaptation in thalamic barreloid
and cortical barrel neurons to periodic whisker deflections varying in
frequency and velocity. J Neurophysiol 92:3244 –3254.

Kiani R, Hanks TD, Shadlen MN (2008) Bounded integration in parietal
cortex underlies decisions even when viewing duration is dictated by the
environment. J Neurosci 28:3017–3029.

Kline RB (2004) Beyond significance testing. Washington, DC: American
Psychological Association.

Mitchinson B, Martin CJ, Grant RA, Prescott TJ (2007) Feedback control in
active sensing: rat exploratory whisking is modulated by environmental
contact. Proc Biol Sci 274:1035–1041.

Pinto DJ, Brumberg JC, Simons DJ (2000) Circuit dynamics and coding
strategies in rodent somatosensory cortex. J Neurophysiol 83:1158 –1166.

Ritt JT, Andermann ML, Moore CI (2008) Embodied information process-
ing: vibrissa mechanics and texture features shape micromotions in ac-
tively sensing rats. Neuron 57:599 – 613.

Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intrapa-
rietal area during a combined visual discrimination reaction time task.
J Neurosci 22:9475–9489.

Salinas E, Hernandez A, Zainos A, Romo R (2000) Periodicity and firing rate
as candidate neural codes for the frequency of vibrotactile stimuli. J Neu-
rosci 20:5503–5515.

Sanchez-Jimenez A, Panetsos F, Murciano A (2009) Early frequency-
dependent information processing and cortical control in the whisker
pathway of the rat: electrophysiological study of brainstem nuclei princi-
palis and interpolaris. Neuroscience 160:212–226.

Shadlen MN, Newsome WT (1996) Motion perception: seeing and decid-
ing. Proc Natl Acad Sci U S A 93:628 – 633.
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