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Introduction
Could the pigeon emerge as a leading model animal for the 
neuroscientific study of complex visual processing? When this 
question was posed over 30 years ago,1 promising signs sug-
gested that the pecking pigeon might indeed develop into an 
extremely useful model system. Since then, numerous behavio-
ral, computational, and neuroscientific advances have yielded 
fresh insights into how categories are formed in the pigeon’s 
brain and how they help this highly mobile animal navigate the 
sundry intricacies of its visual world. We believe that research-
ers should now take special note of these advances and pay far 
greater attention to this increasingly important model of com-
plex visual processing.

Categorizing Naturalistic Stimuli
The first step in developing the pigeon model was to devise 
effective behavioral paradigms for experimentally investigat-
ing visual categorization. Building on the pioneering research 
of Richard Herrnstein,2 innovative techniques have now been 
successfully deployed to concurrently teach pigeons to dis-
criminate as many as 16 different object categories, such as 
color photographs of cars, dogs, bottles, babies, keys, and 
trees.3 Also revealed in this research have been critical func-
tional relations: (a) with increasingly diverse stimuli in each 
category, acquisition is slower, but accuracy to novel transfer 
stimuli is superior, (b) category learning is robust even when 
stimuli are never repeated within or between sessions of 

training, although repetition facilitates acquisition, and (c) 
training with stimuli arbitrarily grouped into “pseudocatego-
ries” severely slows the learning process compared to training  
with the same stimuli grouped into perceptually coherent 
categories.

The second step in developing the pigeon model was to see 
whether and how these and many other empirical findings 
could be embraced by a computational model. Although the 
use of complex photographic stimuli has yielded strong cate-
gory learning by pigeons, such naturalistic stimuli can be rather 
difficult to manipulate experimentally and to represent in for-
mal models of behavior and cognition.

One way to solve the problem of stimulus representation is 
to adopt a common-elements approach. This approach—com-
bined with an error-driven learning rule—is now known as the 
“common-elements” model,4 and has been highly effective in 
explaining a broad range of empirical findings in pigeons’ cat-
egorization of naturalistic images.

To appreciate the “common-elements” model, first consider 
how it represents complex visual stimuli and the relation among 
them. As shown in Figure 1, each of 3 stimuli is represented by 
a set of elements. Different stimuli may share elements; those 
shared elements are termed “category-specific” (and are colored 
light blue). On the other hand, those elements that are active 
only in the presence of individual stimuli, but no others are 
termed “stimulus-specific” (and are colored dark blue, red, and 
yellow). Second, to cope with the dynamic interplay between 
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and Onur Güntürkün3

1Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA. 
2Department of Psychology, The Ohio State University, Columbus, OH, USA. 3Biopsychology, 
Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, 
Germany.

ABSTRACT: Over the past 30 years, behavioral, computational, and neuroscientific investigations have yielded fresh insights into how pigeons 
adapt to the diverse complexities of their visual world. A prime area of interest has been how pigeons categorize the innumerable individual 
stimuli they encounter. Most studies involve either photorealistic representations of actual objects thus affording the virtue of being naturalistic, 
or highly artificial stimuli thus affording the virtue of being experimentally manipulable. Together those studies have revealed the pigeon to be a 
prodigious classifier of both naturalistic and artificial visual stimuli. In each case, new computational models suggest that elementary associative 
learning lies at the root of the pigeon’s category learning and generalization. In addition, ongoing computational and neuroscientific investiga-
tions suggest how naturalistic and artificial stimuli may be processed along the pigeon’s visual pathway. Given the pigeon’s availability and 
affordability, there are compelling reasons for this animal model to gain increasing prominence in contemporary neuroscientific research.

KeywoRdS: Vision, categorization, learning, generalization, neuroevolution, pigeon

ReCeIVed: December 26, 2023. ACCePTed: February 9, 2024.

TyPe: Commentary

FundIng: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: This research was supported by 
grant P01HD080679 from the National Institutes of Health (EAW), a CAREER award from 
the National Science Foundation (BMT), and AVIAN MIND ERC-2020-ADG LS5 GA No. 
101021354 (OG).

deCLARATIon oF ConFLICTIng InTeReSTS: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CoRReSPondIng AuTHoR: Edward A Wasserman, Department of Psychological and 
Brain Sciences, The University of Iowa, 340 Iowa Avenue, Iowa City, IA 52242, USA.  
Email: ed-wasserman@uiowa.edu

CoMMenT on: Wasserman EA, Kain AG, O’Donoghue EM. Resolving the associative 
learning paradox by category learning in pigeons. Curr Biol. 2023 Mar 27;33(6):1112-1116.e2. 
doi: 10.1016/j.cub.2023.01.024. Epub 2023 Feb 7. PMID: 36754051; PMCID: PMC10050111.

1235918 EXN0010.1177/26331055241235918Neuroscience InsightsWasserman et al
article-commentary2024

https://uk.sagepub.com/en-gb/journals-permissions
mailto:ed-wasserman@uiowa.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F26331055241235918&domain=pdf&date_stamp=2024-02-28


2 Neuroscience Insights 

behavioral control exerted by the category-specific and stimu-
lus-specific elements during category learning and subsequent 
generalization testing, the common-elements model incorpo-
rated an error-driven learning algorithm.

Beyond its established power to embrace the basic regulari-
ties of acquisition and generalization, the common-elements 
model is proving to be extremely valuable in elucidating the 
neural substrates of pigeon category learning.5 The model 
nicely captures the hierarchical processing of visual stimuli 
along the pigeon’s tectofugal pathway.6 In addition, dopamine-
mediated feedback within cell assemblies of the nidopallium 
caudolaterale fittingly mediates the pigeon’s learning to per-
form the duly reinforced categorization response.7 Here, it is 
noteworthy that categorization is usually not detectable in the 
firing patterns of individual neurons, but requires a neural net-
work. Indeed, just 33 neurons in a pigeon visual associative 
forebrain area is sufficient to recognize the category “human,” 
whereas single neurons in this network are unable to do so.8

Categorizing Artificial Stimuli
As mentioned above, categorization studies involving natural-
istic stimuli—such as color photographs of actual objects—
provide the results of these investigations at least the veneer of 
verisimilitude. Still, the decided advantage of experimental 
control inheres to categorization studies involving artificial 
stimuli, which have also been utilized in recent research.

In particular, Gabor images—circular stimuli comprising 
parallel black-and-white lines varying in width and tilt—are 
often used in human and animal categorization studies. 
Because the line width and tilt dimensions of these artificial 
stimuli can be independently manipulated, cleverly crafted 
tasks can be devised to assess organisms’ possible selective 
attention to and behavioral control by these dimensions. These 

specific categorization tasks have not only proven to be practi-
cal, but they have had considerable theoretical significance for 
several reasons.9 First, people learn tasks that align the prevail-
ing category boundaries with either of these 2 visual dimen-
sions far faster than otherwise identical tasks that do not. 
Second, pigeons do not exhibit this marked disparity in learn-
ing speed. Third, these results have been interpreted as reflect-
ing people’s preferential deployment of selective attention and 
rule-based learning mechanisms which pigeons may not have. 
Specifically, people may possess a highly elaborated prefrontal 
cortex that is capable of mediating these attentional and cog-
nitive processes, whereas pigeons possess a less elaborated 
nidopallium caudolaterale that may be incapable of doing so.

Rather than concentrating on those neural and cognitive 
mechanisms that pigeons may lack, we pursued the possibility 
that pigeons’ otherwise robust categorization prowess might 
reflect their deploying a particularly powerful associative 
mechanism, as we earlier reported to be the case for their cat-
egorizing naturalistic stimuli. To experimentally explore this 
possibility, we developed a second computational model that 
simply credited pigeons with the ability to associate individual 
Gabor stimuli with 2 distinctive categorization responses.10 As 
illustrated in Figure 2, a 3-layer model was created. Each cor-
rect categorization response strengthened pigeons’ tendency to 
repeat that response (the darkened red region signifying excita-
tion of the Category A response) and weakened their tendency 
to make the alternative, incorrect response (the brightened 
white region signifying inhibition of the Category B response) 
to that same stimulus. To enable the model to generalize 
responding to novel stimuli, we allowed learning to spread 
along both line tilt and width dimensions to a limited degree.

Finally, we created 2 new categorization tasks that should 
not have advantaged selective attention or rule-learning to 

Figure 1. Representation of stimulus-specific and category-specific elements for a trio of naturalistic photographic stimuli. See text for details.
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achieve task mastery. Each task involved training categories 
lying within 2 circular rings created by choosing Gabor stim-
uli from the complete line width-line tilt space depicted in 
Figure 3.

The first category structure we studied was the “concentric-
rings” task11 illustrated in the top portion of Figure 3. For rule-
based learners to acquire this task: (a) they would have to 
forsake selectively attending to either line width or line tilt; (b) 
they would have to attend to both dimensions; and (c) they 
would have to apply a bimodal decision rule along those dimen-
sions, thereby making this a very challenging category structure 
to master. However, because pure associative learners would 
not need to engage in such complex neural computations, they 
should quite readily acquire the task.

Our model illustrates how a purely associative learning 
mechanism can readily learn the concentric rings task. 
Figures 3A and B show the associative representations 
acquired by the model at the beginning of training, where 2 
stimuli from each category were given: Category A outlined 
in red and Category B outlined in blue (Figure 3A). In each 
of the 2 panels of Figure 3B, the boundaries of the 2 different 
category distributions are outlined in black; 2 associations 
should arise to the correct category (shown by the brighter 
red and brighter blue regions) and 2 associations should arise 
to the incorrect category (shown by the bright white regions). 
Also note that the spread of association can extend beyond 
the specific values of each training stimulus and into nearby 
regions of the category space.

Figure 3C represents the complete stimulus spaces of 
Categories A and B that would result from an infinitely long 
series of trial-unique and randomly presented Gabor stimuli, 
and Figure 3D represents the predicted associations of the 
model at the end of training. Figure 3D shows that the model 
appropriately learns to associate distinctive regions of the stim-
ulus space with the correct category responses: strongly favor-
ing responding “Category A” to stimuli in the inner ring and 
strongly favoring responding “Category B” to stimuli in the 
outer ring.

Pigeons behaved just as the model predicted, with accuracy 
levels surpassing a remarkable 85% to each category by the end 
of training. Furthermore, because of the generalization of 
incorrect responses from one training ring to the other, choice 
accuracy to stimuli in the inner training ring was actually lower 
than to novel testing stimuli lying within the center of the 
stimulus space, and choice accuracy to stimuli in the outer 
training ring was actually lower than to novel testing stimuli 
lying beyond the outer training ring—an otherwise surprising 
pattern of responding, but a clear hallmark of associative learn-
ing called “peak shift.”

The second task we studied involved stimuli which were 
similar to the concentric-rings task, but which cut each train-
ing ring into 4 sections.12 Figures 3E and G depict the com-
plete stimulus distributions possible in the “+ cut” and the “× 
cut” variants of the “sectioned-rings” task, respectively, where 
Category A is shown in red and Category B is shown in blue. 
Like the concentric-rings task, this task thwarts the efforts of a 

Figure 2. Depiction of a Gabor stimulus from the inner training ring (Category A) and its stages of processing by our computational network model (A), 

and its associative representation in the 2 rival stimulus spaces for the concentric-rings task (B, C, and D). See text for details.
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learner to use a simple, unidimensional rule. Furthermore, the 
sectioned-rings task eliminates the possibility of a learner 
deploying a complex rule that would divide the stimulus space 
into an “interior” category and an “other” category. Rule forma-
tion in this sectioned-rings task should therefore be virtually 

impossible, yet a pure associative learner ought to acquire the 
task if provided sufficient training.

To see why, Figure 3F illustrates the model’s representation of 
the predicted associations between the stimulus space and 
Category A (left) and Category B (right) responses at the end of 

Figure 3. Depiction of the full Gabor stimulus distributions in 2 training categories plus our computational network model’s corresponding associative 

representations for the concentric-rings task (A–D) and for 2 different variants of the sectioned-rings task (E–H). See text for details.
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training for the + cut variant. Brighter colors represent regions 
associated with stronger associations, whereas whiter colors rep-
resent regions associated with weaker associations. In both pan-
els, the sections that are correct for each category are outlined in 
black. Figure 3H illustrates the model’s representation of the 
predicted associations between the stimulus space and Category 
A (left) and Category B (right) responses at the end of training 
for the × cut variant. Despite the extreme complexity of these 2 
category structures, a pure associative learner ought to acquire 
each of these task variants.

The pigeons did indeed learn both versions of the sectioned-
rings task, finally achieving an average score of 68% correct. In 
fact, the pigeons’ accuracy averaged 73% correct in the middle of 
the ring sections, but just 63% correct near the boundaries of the 
adjacent rings. This disparity in accuracy is just what the asso-
ciative model predicts due to stimulus generalization of incor-
rect category responses where 2 training sections adjoin one 
another.

Synopsis and Prospectus
The striking success of simple computational models in 
embracing the results of categorization studies involving both 
naturalistic and artificial stimuli underscores the power of asso-
ciative learning—a process that is often underestimated in cog-
nitive science. Perhaps it is no accident that this learning 
process has seeded the strong success that is so often celebrated 
in contemporary artificial intelligence.

Notwithstanding that important observation, the question 
arises: How might we understand the small modifications in 
computational modeling we made to accommodate the differ-
ent visual stimuli used in our studies with naturalistic and arti-
ficial stimuli? One possibility is that the greater simplicity of 
Gabor stimuli than photographic stimuli allows the former 
images to be processed earlier in the pigeon’s tectofugal path-
way than the latter stimuli.4,6 Because such hierarchical pro-
cessing might not prove to be correct, it certainly represents an 
important avenue to pursue with contemporary neuroscientific 
techniques.13

These techniques now include fMRI,14 thereby opening the 
door to visualizing the neural bases of perception and cognition 
in pigeons. Such investigation would be a major step forward in 
elucidating the evolution of neurocomputation.15

Given the pigeon’s availability and affordability, there are 
several compelling reasons for this animal model to gain 
increasing prominence in contemporary neuroscientific 
research. We look forward to the fresh insights that the results 
of this research will reveal.
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