BFNL sequence learning





  METLAB BiopsyToolbox












Prof. Shigeru Watanabe (Keio University, Tokyo): Empathy and Envy in Animals
Freitag, 5. September, 15:00 c.t. (GA 04/187)


Ruhr-Universität Bochum
Fakultät für Psychologie
AE Biopsychologie
GAFO 05/618
D-44780 Bochum

Phone: +49 - 234 - 32 - 28213
Fax: +49 - 234 - 32 - 14377


News & Views

How white matter influences functional asymmetry

Structural asymmetries in white matter tracts within the language system have been suggested to be one of the factors underlying functional language lateralization. To test this assumption, researchers from Bergen, Norway, and the biopsychology lab in Bochum examined how performance in the dichotic listening task is affected the structure of the arcuate and uncinate fasciculus, assessed with DTI. Both arcuate and uncinate fasciculus had a larger tract volume in the left compared to the right hemisphere, but fractional anisotropy was higher in the right than in the left arcuate fasciculus. Interestingly, structural asymmetries were linked to functional lateralization, that is, tract volume and fractional anisotropy of the left arcuate fasciculus were positively correlated to the strength of functional language lateralization, as was the volume of the right uncinate fasciculus. These results suggest that both micro- and macro-structural properties of language-relevant intrahemispheric white matter tracts modulate the behavioral correlates of language lateralization.

Ocklenburg, S., Schlaffke, L., Hugdahl, K., Westerhausen, R. (2014). From structure to function in the lateralized brain: How structural properties of the arcuate and uncinate fasciculus are associated with dichotic listening performance. Neuroscience Letters, 580: 32-36.


News & Views

PhD Thesis – Nils Kasties

On Friday the 11th of July 2014 Nils Kasties defended his PhD thesis entitled „Neuronal foundations of decision making in the pigeon nidopallium caudolaterale”. …And what a defense it was!!! Nils presented two major experiments and perfectly embedded them into the current literature. In the end, he was able to integrate his findings into a model of decision making in the avian forebrain. Afterwards, Nils bravely and successfully defended his arguments for a full hour against a whole barrage of counterarguments until the members of committee were exhausted and were just yearning for sparkling wine and party.  But before the party could start, members of the committee unanimously decided to award Nils the title Dr. rer. nat. Congratulations Nils! We are proud of you. In the picture you can see Nils with his two advisors on his PhD-cart with which he was drawn back to the lab.


News & Views

RECORding single unit activity in the freely moving pigeon

Learning is a fundamental ability of all organisms and the underlying neuronal mechanisms are highly conserved across species. To understand the mechanisms of learning at the single neuron level, we seek to record the activity of individual neurons across different learning stages. With this goal, RUB biopsychologists designed a behavioral task which encompassed three learning stages in a single experimental session. They made use of the keenness of pigeons in operant tasks who are willing to perform a vast amount of trials (>1000) for a relatively low amount of reinforcers. In addition, several methodological measurements were implemented to improve and control recording quality. To sum up and conserve the used methodological standards, we published a video article in the Journal of Visualized Experiments (JoVE), where the sophisticated behavioral paradigm as well as our methodological inventions are visualized and described in detail.

Starosta, S., Stüttgen, M. C., Güntürkün, O. (2014). Recording Single Neurons' Action Potentials from Freely Moving Pigeons Across Three Stages of Learning. J. Vis. Exp. (88), e51283, doi:10.3791/51283.


News & Views

Is Dolphin Cognition Special?

Recently, the government of India decided by law that "cetaceans...should be seen as 'non-human persons' and as such should have their own specific rights." This decision results from the political pressure, the public opinion, and the work of a small group of scientists who argue that dolphins have an intelligence that comes close to humans. In Germany activists and members of the Green Party demand that the dolphinaries in Duisburg  and Nürnberg be closed. But how strong is the scientific evidence for the cognitive exceptionality of dolphins? Paul Manger [Neuroscience, 2013] reviewed the dolphin cognition literature and drew a quite sobering conclusion. But is his critique justified or does he throw the baby out with the bathwater? In an invited review to Brain, Behavior and Evolution (2014), Onur Güntürkün summarizes the literature on dolphin cognition and compares it with evidences from other animals. He concludes that dolphin cognition is not exceptional since there is not a single achievement that has not also been shown in several other species. However, in all major areas of comparative cognitive science, dolphins have been shown to achieve fast learning, high flexibility, and a swift transfer of learned knowledge to new contingencies. So, dolphins are in many respects cognitive generalists, performing at an overall high level. So, the evolution of high cognitive skills has independently taken place in several lines of life, among them primates, cetacean (mostly dolphins), birds (mostly corvids and parrots). There seem to be many different routes to intelligence.

Güntürkün, O. (2014). Is dolphin cognition special? Brain Behav. Evol., 83: 177-180.


News & Views

The avian and the mammalian hippocampus: A divide of 300 million years

The evolutionary lines of birds and mammals diverged nearly 300 million years ago. As a consequence, the brains of these two classes of vertebrates share some features but also have many unique and non-shared properties. The hippocampus is an especially interesting case: the hippocampus of mammals and birds is homologous and thus stems from a common reptilian ancestor that already had a hippocampus. As a result, avian and mammalian hippocampi share some similar functions (e.g. spatial cognition) and anatomical features (e.g. a re-entrant loop). But they also developed a large number of bird- or mammal-typical aspects that do not seem to have counterpart. Overall, it is still mostly unknown which components of the bird hippocampus are avian-unique and which are similar to mammals. To solve these questions, scientists from Bochum, Düsseldorf, and Bowling Green (USA) analyzed binding site densities for 11 different receptor systems by using quantitative in vitro receptor autoradiography. Additionally, they labeled zinc to show a further compartmentalization of the hippocampus. The regionally different receptor densities mapped well onto seven hippocampal subdivisions previously described. Several differences in receptor expression highlighted distinct hippocampal subfields. In addition, several similarities in receptor binding densities between subdivisions of the avian and mammalian hippocampus were observed. Despite the similarities, the consortium of scientists concluded that 300 hundred million years of independent evolution has led to a vast mosaic of similarities and differences in the organization of the avian and mammalian hippocampal formation. Thinking about the avian hippocampus in terms of the strict organization of the mammalian hippocampus is likely insufficient to understand the hippocampus of birds.

Herold, C., Bingman, V. P., Ströckens, F., Letzner, S., Sauvage, M., Palomero-Gallagher, N., Zilles, K. Güntürkün, O. (2014). Distribution of Neurotransmitter Receptors and Zinc in the Pigeon (Columba livia) Hippocampal Formation: A Basis for Further Comparison with the Mammalian Hippocampus, J. Comp. Neurol., 522: 2553-2575.


News & Views Archive

See older News & Views