METLAB BiopsyToolbox

 

 

 

 

 

 

 

 

News

10.03.2017

Teilnehmer gesucht

Studienteilnehmer (Männer) für Neuro-Studie zur Bewertung von #Selfies auf Facebook gesucht. mehr

21.09.2017

Teilnehmer gesucht

Kernspinstudie zu Allgemeinwissen, Intelligenz und Persönlichkeit. Interessenten (ab 35 Jahren) können sich telefonisch (0234/32 21775) oder per eMail (nkwipem@gmail.com) für die Studie anmelden. mehr

20.11.2017

Vortragsankündigung

Biopsychology Research Colloquium: 20.11.2017, 1 - 3 pm, GAFO 05/425
Uwe Mayer (Center for Mind/Brain Sciences, Univ. of Trento, Italy): Different structure same function: avian hippocampus and spatial memory

 

Contact

Ruhr-Universität Bochum
Fakultät für Psychologie
AE Biopsychologie
GAFO 05/618
D-44780 Bochum

Phone: +49 234 - 32 28213
Fax: +49 234 - 32 14377

Email: biopsychologie@rub.de
Homepage: http://www.bio.psy.rub.de


News & Views

DNA methylation in Genes involved in body asymmetries affect Cognitive Aspects of Language Lateralization

The dichotic listening task is the most widely used paradigm measuring language lateralization. The original non-forced condition consists of different consonant-vowel syllables, i.e. /ba/ and /ga/ presented to the left and right ear, respectively. Most subjects tend to report the syllable presented to the right ear: This so-called right ear advantage reflects left-hemispheric dominance for language. In the forced-attention conditions, subjects are instructed to only attend to input from one ear. Previous studies from the Biopsychology and other labs indicate that heritability is low, which is in line with an epigenetic contribution to language lateralization. The Brandler-Paracchini model of hemispheric asymmetries proposes that genes establishing ciliogenesis and bodily asymmetries affect the development of brain midline structures and language lateralization. KIAA0319 is a promising candidate gene, as it is involved in asymmetrical language processing and ciliogenesis. Here, a group of researchers from the Biopsychology and the Genetic Psychology Department analyzed DNA methylation in the KIAA0319 promoter region to investigate whether epigenetic markers of language lateralization can be identified in non-neuronal tissue. DNA methylation in the KIAA0319 promoter region was predictive for performance in the forced-left and forced-right conditions, but not for performance in the non-forced condition. This is consistent with an effect of DNA methylation on cognitive aspects of language lateralization within the context of the Brandler-Paracchini model of hemispheric asymmetries.

 

Schmitz J, Kumsta R, Moser D, Güntürkün O, Ocklenburg S. KIAA0319 promoter DNA methylation predicts dichotic listening performance in forced-attention conditions. Behavioural Brain Research. 2018 337: 1-7.

 

News & Views

First German - New Zealand Symposium

On Friday, 20.10.2017, the first New Zealand - German symposium on emotion and consciousness entitled "Who am I and how do I feel about it?" took place at Ruhr-University Bochum.
Part of an exchange between Victoria University of Wellington and Ruhr-University Bochum funded the initiative for technology and science exchange between New Zealand and Germany, the symposium was a great success.
Hosted by Sebastian Ocklenburg from the biopsychology lab, the symposium had a diverse line-up of speakers from both countries, including Gina Grimshaw from Victoria University of Wellington and Catrona Anderson from the University of Otago, as well as David Carmel from the University of Edinburgh, Jutta Peterburs from Heinrich-Heine-University Düsseldorf and Julian Packheiser from the biopsychology lab. The room was packed with attendants who enjoyey vivid discussion on the nature on emotion and consciousness in both humans and non-human animals.

We are already looking forward to the second symposium!

 

News & Views

A MOTIVATIONAL PROCESS ACCOUNTS FOR FAT REGULATION IN BIRDS

Unpredictable rewards increase the vigor of responses in autoshaping (a Pavlovian conditioning procedure) and are preferred to predictable rewards in free-choice tasks involving fixed- versus variable-delay schedules. The significance those behavioral properties may have in field conditions is currently unknown. However, it is noticeable that when exposed to unpredictable food, small passerines – such as robins, titmice, and starlings – get fatter than when food is abundant. In functional terms, fattening is viewed as an evolutionary strategy acting against the risk of starvation when food is in short supply. But this functional view does not explain the causal mechanisms by which small passerines come to be fatter under food uncertainty. Here, it is suggested that one of these causal mechanisms is that involved in behavioral invigoration and preference for food uncertainty in the laboratory. Based on a psychological theory of motivational changes under food uncertainty, we developed an integrative computational model to test this idea. We show that, for functional (adaptive) reasons, the excitatory property of reward unpredictability can underlie the propensity of wild birds to forage longer and/or more intensively in an unpredictable environment, with the consequence that they can put on more fat reserves.

 

Anselme, P., Otto, T. & Güntürkün, O. (2017). How unpredictable access to food increases the body fat of small passerines: a mechanistic approach. Behavioural Processes, 144, 33-45.


News & Views

Hemispheric timing differences in dichotic listening

When the two hemispheres receive different sensory input, one might think of a race in which the faster hemisphere dominates our perception.
This can be demonstrated with the so-called “dichotic listening task”. Here, two different vowels are presented simultaneously; one to the left ear that reports to the right hemisphere and one to the right ear, which communicates to the left hemisphere. However, since the left hemisphere is specialized in analyzing vowels, this task is more like a swimming contest between a shark (the left hemisphere) and a rabbit (right hemisphere). Hence, the speed difference between the hemispheres is in favor of the left one.
By using the dichotic listening task in an EEG setting, we measured this hemispheric timing difference. Furthermore, by using MRI techniques, we found that the timing difference is smaller in participants with a better microstructure in the posterior part of the corpus callosum, a white matter commissure that is often called the bridge between the two hemispheres.
Hence, in our metaphor, this bridge seems to help the rabbit across the water, thus equalizing its chances in the swimming competition against the shark.

 

Friedrich, P., Ocklenburg, S., Heins, N., Schlüter, C., Fraenz, C., Beste, C., Güntürkün, O., & Genç, E. (2017). Callosal microstructure affects the timing of electrophysiological left-right differences. NeuroImage.

 

News & Views

APOMORPHINE ALTERS INCENTIVE SALIENCE, BUT NOT PREFERENCE

When rodents are given a free choice between a variable option and a constant option, they may prefer variability. This preference is even sometimes increased following repeated administration of a dopamine agonist. The present study was the first to examine preference for variability under the systemic administration of a dopamine agonist, apomorphine (Apo), in birds. Experiment 1 tested the drug-free preference and the propensity to choose of pigeons for a constant over a variable delay. It appeared that they preferred and decided more quickly to peck at the optimal delay option. Experiment 2 assessed the effects of a repeated injection of Apo on delay preference, in comparison with previous control tests within the same individuals. Apo treatment might have decreased the number of pecks at the constant option across the different experimental phases, but failed to induce a preference for the variable option. In Experiment 3, two groups of pigeons (Apo-sensitized and saline) were used in order to avoid inhomogeneity in treatments. They had to choose between a 50% probability option and a 5-s delay option. Conditioned pecking and the propensity to choose were higher in the Apo-sensitized pigeons, but, in each group, the pigeons showed indifference between the two options. This experiment also showed that long-term behavioral sensitization to Apo can occur independently of a conditioning process. These results suggest that Apo sensitization can enhance the attractiveness of conditioned cues, while having no effect on the development of a preference for variable-delay and probabilistic schedules of reinforcement.

 

Anselme, P., Edeş, N., Tabrik, S. & Güntürkün, O. (2018). Long-term behavioral sensitization to apomorphine is independent of conditioning and increases conditioned pecking, but not preference, in pigeons. Behavioural Brain Research, 336, 122-134.

 

News & Views Archive

See older News & Views