METLAB BiopsyToolbox











Teilnehmer gesucht

Kernspinstudie zu Allgemeinwissen, Intelligenz und Persönlichkeit. Interessenten (ab 35 Jahren) können sich telefonisch (0234/32 21775) oder per eMail ( für die Studie anmelden. mehr




Die Klausurnachbesprechung zu der Klausur "Left Brain Right Brain" findet am Dienstag, den 13.03.2018, von 14:00 – 15:00 Uhr im Seminarraum der Abteilung Biopsychologie, GAFO 05/425, statt.
Wir bitten um Anmeldung (Betreff: Klausureinsicht Left Brain Right Brain) bis einschließlich Freitag, den 09.03.2018, per E-Mail an:

Die Klausurnachbesprechung zu der Klausur "Lernen" findet am Montag, den 12.03.2018, von 12:00 – 13:00 Uhr im Seminarraum der Abteilung Biopsychologie, GAFO 05/425, statt.
Wir bitten um Anmeldung (Betreff: Klausureinsicht Lernen) bis einschließlich Freitag, den 09.03.2018, per E-Mail an:



!!! ÄNDERUNG Klausureinsicht Motivationspsychologie!!!

Die Klausureinsicht findet DONNERSTAG, den 15.03.2018 um 12 Uhr im Raum GAFO 05/425 (Seminarraum Biopsychologie) statt.


Ruhr-Universität Bochum
Fakultät für Psychologie
AE Biopsychologie
GAFO 05/618
D-44780 Bochum

Phone: +49 234 - 32 28213
Fax: +49 234 - 32 14377


News & Views

A novel brain region in female zebra finches for the evaluation of courtship song

Humans select their partners based on a wide variety of factors; their looks, how much money they have on the bank, or a funny personality. For songbirds, it is all about song. Despite its crucial role in mate choice, little is known about the neurobiological mechanisms underlying the accurate interpretation of courtship song in females. Using a combination of functional resonance imaging (fMRI), immediate early gene expression, and behavioral tests, a group of scientists from Antwerp, Montreal, and Bochum aimed to identify the circuitry  involved in the evaluation of mating songs in the zebra finch (Taeniopygia guttata). Females were exposed to either the longer, faster, and more stereotyped courtship song or a neutral song, and this revealed two brain regions, the Mesopallium caudomediale (CMM) and the Nidopallium caudocentrale (NCC), that specifically become active when listening to the mating song. The CMM is a well-known auditory area sensitive to differences in tempo. Since a fast pace is a hallmark of the male courtship song, this was not a very surprising result. More surprising was the activation of the NCC, a ‘hub’ area in the limbic forebrain. This area integrates complex auditory information with sexual imprinting memory of what is desirable of a song. Moreover, the NCC projects to the arcopallium, which is important for coordinating movement. Thus, the NCC is well suited to evaluate the attractiveness of a song and in response coordinate courtship behavior; like calling back to a desirable mate. This study is the first to show the important role of limbic pathways in the evaluation of courtship song and ultimately mate choice of female zebra finches.


van Ruijsvelt, L., Chen, Y., von Eugen, K., Hamaide, J., De Groof, G., Verhoye, M., Güntürkün, O., Wooley, S.C. & van der Linden, A. (2018). fMRI reveals a novel region for evaluating acoustic information for mate choice in a female songbird. Current Biology, 28(5), 711-721.e6. DOI:10.1016/j.cub.2018.01.048


News & Views

PhD Thesis Patrick Friedrich

On Wednesday, the 14th of February 2018, Patrick succesfully defended his PhD thesis entitled "The Inter- and Intrahemispheric Neural Foundation of Functional Hemispheric Asymmetries". Since the day of his defense fell on Valentine's Day 2018, Patrick showed his love for science by giving the captivated audience a very well received presentation on the triadic model and all the experiments he performed to prove it. After starting in 2014, Patrick has used an impressive methodological array from EEG to fMRI and NODDI imaging to investigate hemispheric asymmetries and interhemispheric interaction and yielded some fascinating insights that he presented in the 25 minute talk. During the subsequent discussion, Patrick was able to answer even the most difficult questions on NODDI imaging and its validation. Obviously, the committee unanimously decided that he had passed. It was decided to award him the prestigous grade of a Dr. rer. nat. with magna cum laude.
Relived, Patrick was presented his PhD hat, inspired by his love for chess and coffee (he has drunken approximately 3500 cups during his PhD).

Congratulations Patrick! Your supervisors and the rest of the lab are proud of you!


News & Views

PhD Thesis Charlotte Koenen

On Friday, the 8th of December 2017, Carlotte had her IGSN graduation day. She had already gloriously defended her PhD thesis entitled „Categories in the pigeon brain: From brain function to behavior“ many months before. Even her old Master thesis advisor Miko Colombo had taken all the way from New Zealand for that occasion.  But Charlotte is worth it. For sure. In her experimental work she had managed to give the meanwhile long established categorization research in pigeons a completely new direction. Charlotte could demonstrate that we should not look for exemplar or prototype cells in vain but should look for the wisdom of the population code. This provides a completely new way of looking at categorization processes. And she had introduced a novel tool, digital embryos, that is now the trademark of the whole SFB 874. What a success story! The IGSN ceremony was beautiful. Only Onur had his usual bad hair day. But nobody saw that since all eyes were spot on Charlotte.

Congratulations Charlotte! We are proud of you!


News & Views

NMDA receptors in the avian amygdala and the premotor arcopallium mediate distinct aspects of appetitive extinction learning.

As it is well known to the avian scientific community, a small sector in the avian posterior ventral telencephalon encompasses inextricably intertwined subnuclei which are identified as being of amygdaloid (amygdala) or of somatomotor (arcopallium) nature. Within the SFB 1280, we scrutinized the functional roles of the avian amygdala and the premotor arcopallium in the course of appetitive extinction learning. Since extinction learning is crucially involved in the ability to flexibly acclimatize to the incessantly changing environment which is indispensable for the survival of living organisms, it is of great importance to comprehend the invariant properties of the neural basis of extinction learning. Therefore, we recruited pigeons as our animal model and locally blocked the NMDARs in the avian amygdala and the arcopallium prior to extinction training. We found out that the encoding of extinction memory entailed the activation of amygdaloid NMDARs, while the arcopallial NMDARs were engaged in the consolidation and subsequent retrieval of extinction memory. Furthermore, rendering inactivation in the premotor arcopallium also prompted a general perturbation in the motoric output. The double dissociation between arcopallium and amygdala discerned in the study imparts new insights on the two key components of the avian extinction network. Importantly, the resemblance of our results to the data procured from mammals indicates a shared neural mechanism underlying extinction learning moulded by evolution.


Gao, M., Lengersdorf, D., Stüttgen, M. C., & Güntürkün, O. (2018). NMDA receptors in the avian amygdala and the premotor arcopallium mediate distinct aspects of appetitive extinction learning. Behavioural Brain Research, 343(January), 71–82.


News & Views

The Book on the Lateralized Brain is out!

It started with occasional discussions during coffee (“one should finally write a book like that”) and ended, years later, with finally holding this book in hand. The textbook “The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries” by Sebastian Ocklenburg & Onur Güntürkün achieves many functions at the same time: It is an entertaining overview of twelve different areas of research on brain asymmetries; each chapter starting with a short story and proceeding with wit and colorful pictures. The book is also a resource for scientists who would like to find a timely overview on different aspects of lateralization with hundreds of references. Last but not least, this book tries to achieve a change of mind in the area of brain asymmetry research. For too long, this field saw itself outside of neurobiology, outside of the animal kingdom, and outside of a serious evolutionary scope. By embedding asymmetry research in these areas, this book works for a kind of science on left-right differences that thrieves for mechanistic explanations of open questions. And in the very end, it was also fun to write it; Sort of.


Ocklenburg, S. and Güntürkün, O., The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries, London: Academic Press, 2017.


News & Views Archive

See older News & Views