METLAB BiopsyToolbox

 

 

 

 

 

 

 

 

News

24.02.2017

Teilnehmer gesucht

Kernspinstudie zu Allgemeinwissen, Intelligenz und Persönlichkeit. Interessenten (ab 35 Jahren) können sich telefonisch (0234/32 21775) oder per eMail (nkwipem@gmail.com) für die Studie anmelden. mehr

10.03.2017

Teilnehmer gesucht

Studienteilnehmer (Männer) für Neuro-Studie zur Bewertung von #Selfies auf Facebook gesucht. mehr

24.07.2017

Vortragsankündigung

BioPsy-Colloquium, 24.07.17, 1 - 3 pm, GAFO 05/425
Lukas Hahn (Avian Cognitive Neuroscience, RUB): Electrophysiological correlates of sequence execution in pigeons

27.07.2017

Vortragsankündigung

SFB 874/ department of Biopsychology, 27.07.17, 4 pm, GAFO 03/252
Jonathon D. Crystal (Indiana University): Animal models of episodic memory

07.08.2017

Vortragsankündigung

BioPsy-Colloquium, 07.08.17, 1 pm, GAFO 05/425
Hiroshi Matsui (Keio University): Sensorimotor control in birds: specialized and shared substrates for dexterous motor skills

Contact

Ruhr-Universität Bochum
Fakultät für Psychologie
AE Biopsychologie
GAFO 05/618
D-44780 Bochum

Phone: +49 234 - 32 28213
Fax: +49 234 - 32 14377

Email: biopsychologie@rub.de
Homepage: http://www.bio.psy.rub.de


News & Views

The Functional Genetics of Handedness and Language Lateralization

Handedness and language lateralization have often been thought to share a common ontogenetic basis. Although specific genetic influences contributing to each phenotype have been identified, no gene has been found to be involved in both phenotypes. However, it is still possible that genes associated with handedness and genes associated with language lateralization share similar gene functions. Here, a group of researchers from the biopsychology lab conducted gene ontology analyses to identify the amount of overlap in functional gene groups between the phenotypes. Results showed that genes associated with handedness are involved in anatomical structure development, pattern specification (especially asymmetry formation) and biological regulation. Genes associated with language lateralization are involved in responses to different stimuli, nervous system development, transport, signaling, and biological regulation. While “handedness genes” mostly contribute to structural development, genes involved in language lateralization rather contribute to activity dependent cognitive processes. This finding has been confirmed by disease association analysis revealing that genes associated with handedness are involved in with diseases affecting the whole body, while genes associated with language lateralization were specifically involved in mental and neurological diseases. These findings further support the idea that handedness and language lateralization are ontogenetically independent, complex phenotypes.

 

Schmitz J, Lor S, Klose R, Güntürkün O, Ocklenburg S. The Functional Genetics of Handedness and Language Lateralization: Insights from Gene Ontology, Pathway and Disease Association Analyses. Front. Psychol. 2017 8:1144. doi: 10.3389/fpsyg.2017.01144

 

News & Views

Whole Exome Sequencing in a Consanguineous Turkish Family with an Overrepresentation of Left-Handednes

About 90% of the population is right-handed, which has often been proposed to result from a single gene. However, molecular studies rather support the idea that handedness is determined by a multitude of small, possibly interacting genetic and non-genetic influences. Here, scientists from the biopsychology lab, the genetic psychology lab and several departments of the medical faculty of Dokuz Eylül University in Izmir performed whole exome sequencing in nine left-handed members of a Turkish family with history of consanguinity in order to detect influences of rare mutations on handedness. Quantitative trait analysis revealed that rare variants on 49 loci on 26 genes show significant associations with handedness; however, none was functionally relevant for handedness (i.e. involved in left-right axis development or nervous system development). This interpretation was further supported by gene ontology analysis, as functional gene groups were also unrelated to the brain. Taken together, this study revealed no indication for a gene or mutation that could realistically determine handedness.

 

Ocklenburg S, Barutçuoğlu C, Özgören AÖ, Özgören M, Erdal E, Moser D, Schmitz J, Kumsta R, Güntürkün O. The Genetics of Asymmetry: Whole Exome Sequencing in a Consanguineous Turkish Family with an Overrepresentation of Left-Handedness. Symmetry 2017, 9, 66.

 

News & Views

In vivo measurement of T1 and T2 relaxation times in awake pigeon and rat brains at 7T

The majority of vertebrate models used in neuroscience are rodents (rats and mice), but increasingly bird species such as zebra finches and pigeons also are used. Whereas zebra finches as songbirds are an excellent model for vocal learning, pigeons typically are used to study mechanisms of learning and memory. However, pigeons also are increasingly tested with cognitive tasks assessing functions, such as sequence acquisition, equivalence learning, categorization, transitive inference, and even orthographic processing. In contrast to rodents, some bird species such as corvids additionally demonstrate high cognitive abilities that are equivalent to those of nonhuman primates. These include complex social interactions, future planning, tool and meta-tool use, mirror self-recognition, and physical problem-solving. To understand the functional and structural organization of the pigeon brain under different conditions, scientists of the Biopsychology Department of the Ruhr-University Bochum developed functional MRI protocols with high temporal resolution. Since transverse (T2) and longitudinal (T1) relaxation times play an important role in optimizing MRI parameters [e.g., contrast level, signal-to-noise ratio], they measured these values for the first time in awake pigeons and rats. The obtained T1 and T2 values for awake pigeons and rats and the optimized habituation protocol will augment future MRI studies with awake animals. The differences in relaxation times observed between species underline the importance of the acquisition of T1/T2 values as reference points for specific experiments.

 

Behroozi, M., Chwiesko, C., Ströckens, F., Sauvage, M., Helluy, X., Peterburs, J., & Güntürkün, O. (2017). In vivo measurement of T1 and T2 relaxation times in awake pigeon and rat brains at 7T. Magnetic Resonance in Medicine.

 

News & Views

SFB 1280 Extinction Learning - accepted!

On May 25, 2017, the DFG Senate Commission for SFBs decided to establish a brand new SFB in Bochum: The SFB1280 Extinction Learning was thus officially established!

This is the first SFB that was born out of our Faculty and the third in Germany given to a Faculty of Psychology. We now have the means to study for four years the behavioral, developmental, neural, and clinical aspects of extinction learning. If successful, the SFB could run for up to 12 years in total. Countless insights, publications, careers, and positions will be born out of that.

The new SFB has 19 project teams. On board are psychologists, medical scientists, theoretical neuroscientists, and biologists from the RUB, and from Essen, Dortmund and Marburg.

more information: RUB news portal / DFG press release

 

News & Views

A reliable paradigm for measuring interhemispheric information transfer

While the two halves of the human brain are connected via white matter commissures, it is difficult to estimate the speed with which the hemispheres share their information.
For a long time, it was believed that a simple behavioral task would do the trick: In one condition, a stimulus is presented on one side while participants should react with the hand of the same side. In the other condition, the stimulus and reacting hand are on different sides. Hence, in the first condition both perception and reaction occur in the same hemisphere, while in the second condition, perception and reaction are processed in different hemispheres. Therefore, the difference in reaction time between the two conditions should reflect the transfer time between the two hemispheres, right? Well, kind of but not quite. For instance, this paradigm is not reliable - If you measure a person today and a week later, the results may vary!
Here, we tested an alternative approach. Instead of relying on reaction times, we calculated the difference in event-related potentials, using the same paradigm with an EEG system. Our results show that with this approach, transfer times measured today are comparable to transfer times measured one year later! Hence, this method allows us to get reliable estimates for the speed of interhemispheric information transfer.

 

Friedrich, P., Ocklenburg, S., Mochalski, L., Schlüter, C., Güntürkün, O., & Genc, E. (2017). Long-term reliability of the visual EEG Poffenberger paradigm. Behav Brain Res, 330, 85-91. doi:10.1016/j.bbr.2017.05.019

 

News & Views Archive

See older News & Views