TO TOP

Large associative brain areas make smart birds

2010-03-09

Mehlhorn et al 2010

Animals with a high rate of innovative and associative-based behaviour usually have large brains. New Caledonian (NC) crows stand out due to their tool manufacture, their generalized problem-solving abilities and an extremely high degree of encephalization. It is generally assumed that this increased brain size is due to the ability to process, associate and memorize diverse stimuli, thereby enhancing the propensity to invent new and complex behaviours in adaptive ways. However, this premise lacks firm empirical support since encephalization could also result from an increase of only perceptual and/or motor areas. Scientists from the Bochum Biopsychology lab, the University of Düsseldorf and the University of Auckland (New Zealand) now compared the brain structures of NC crows with those of other advanced birds. The brains of NC crows were characterized by a relatively large association and motor-learning areas. This supports the hypothesis that the evolution of innovative or complex behaviour requires a brain composition that increases the ability to associate and memorize diverse stimuli in order to execute complex motor output. Since apes show a similar correlation of cerebral growth and cognitive abilities, the evolution of advanced cognitive skills appears to have evolved independently in birds and mammals but with a similar neural orchestration.

Mehlhorn, J., Rehkämper, G., Hunt, G. R., Gray, R. and Güntürkün, O., Tool making New Caledonian crows have larger associative brain areas, Brain, Behav. Evol., 2010, 75: 63-70.

Animals with a high rate of innovative and associative-based behaviour usually have large brains. New Caledonian (NC) crows stand out due to their tool manufacture, their generalized problem-solving abilities and an extremely high degree of encephalization. It is generally assumed that this increased brain size is due to the ability to process, associate and memorize diverse stimuli, thereby enhancing the propensity to invent new and complex behaviours in adaptive ways. However, this premise lacks firm empirical support since encephalization could also result from an increase of only perceptual and/or motor areas. Scientists from the Bochum Biopsychology lab, the University of Düsseldorf and the University of Auckland (New Zealand) now compared the brain structures of NC crows with those of other advanced birds. The brains of NC crows were characterized by a relatively large association and motor-learning areas. This supports the hypothesis that the evolution of innovative or complex behaviour requires a brain composition that increases the ability to associate and memorize diverse stimuli in order to execute complex motor output. Since apes show a similar correlation of cerebral growth and cognitive abilities, the evolution of advanced cognitive skills appears to have evolved independently in birds and mammals but with a similar neural orchestration.

Mehlhorn, J., Rehkämper, G., Hunt, G. R., Gray, R. and Güntürkün, O., Tool making New Caledonian crows have larger associative brain areas, Brain, Behav. Evol., 2010, 75: 63-70.