TO TOP

New DFG-funded research project on decision making

2011-03-22

Ponspike

Maik Stüttgen has been granted a research project on the neural basis of adaptive decision-making. The project will be funded for three years and will focus on neural correlates of subjective value.
Classical models of decision making assume that the objective value of different choice options is transformed to subjective value, i.e. the expected utility of a choice outcome as assessed by an individual subject. Subjective value is known to be influenced by a variety of factors, such as the magnitude of a gain or a loss. Recent studies have suggested that subjective value is coded by the spiking activity of individual neurons in forebrain areas. However, little is known about the properties of the value representation when negative consequences, such as loss of reinforcers, are encountered. Furthermore, the plasticity of these representations has not been characterized. In the present project, pigeons will be exposed to complex perceptual discrimination tasks in a non-stationary environment. Concomitant unit recordings in forebrain areas will enable to relate adaptive decision making to changes in neuronal coding properties.

Ponspike

Maik Stüttgen has been granted a research project on the neural basis of adaptive decision-making. The project will be funded for three years and will focus on neural correlates of subjective value.
Classical models of decision making assume that the objective value of different choice options is transformed to subjective value, i.e. the expected utility of a choice outcome as assessed by an individual subject. Subjective value is known to be influenced by a variety of factors, such as the magnitude of a gain or a loss. Recent studies have suggested that subjective value is coded by the spiking activity of individual neurons in forebrain areas. However, little is known about the properties of the value representation when negative consequences, such as loss of reinforcers, are encountered. Furthermore, the plasticity of these representations has not been characterized. In the present project, pigeons will be exposed to complex perceptual discrimination tasks in a non-stationary environment. Concomitant unit recordings in forebrain areas will enable to relate adaptive decision making to changes in neuronal coding properties.