Bildergalerie

Internships

 

MATLAB BiopsyToolbox

 

 

 

 

 

 

 

 

 

 

 

Contact

Ruhr-Universität Bochum
Fakultät für Psychologie
AE Biopsychologie
IB 6-121 - Postfach 18
D-44780 Bochum

Phone: +49 234 - 32 28213
Fax: +49 234 - 32 14377

Email: biopsychologie@rub.de
Homepage: http://www.bio.psy.rub.de

 


 

 

News & Views

Human neonates prefer colostrum to mature milk

..A recently published study by Klaey-Tassone et al. (2020) suggests that human newborns can olfactorily differentiate colostrum, the initial milk secretion of mothers in the first three days after giving birth, from mature mother milk and water. Results suggest that human neonates prefer colostrum, the mammary secretion that is collected at the lactation stage that best matches the postpartum age of their own mothers. More importantly, they seem to smell the difference between the milk odors indicating an olfactory bias toward the initial milk while showing no preference when being faced with mature milk and water.


 

 

 

 

Klaey‐Tassone, M., Durand, K., Damon, F., Heyers, K.; Mezrai, N., Patris, B., Sagot, P., Soussignan, R., Schaal, B. (2020). Human neonates prefer colostrum to mature milk: Evidence for an olfactory bias toward the "initial milk"? American Journal of Human Biology, e23521. https://doi.org/10.1002/ajhb.23521

News & Views

Light shapes structural asymmetries

...Hemispheric asymmetries represent a fundamental organizational principle of sensory, cognitive, or motor processing in the brains of many animal species. This lateralization is related to left-right differences in the structural organization of neural circuits, but how these asymmetries emerge during ontogeny is still poorly understood. A much discussed issue is the relative importance of genetic and environmental factors. In a current neuroanatomical study, biopsychologists from Bochum therefore investigated how projection asymmetries develop in the visual system of pigeons. Retrograde tracing of the major ascending (tectorotundal) projections in light-exposed and –deprived pigeons indicates that light stimulation during embryonic development leads to a stronger innervation of the left side of the brain. However, light does not enhance stabilization of fibers within the left hemisphere but induces stronger pruning of projections to the less stimulated right hemisphere. These data illustrate how visual input during early development modifies connectivity pattern in both brain halves, which in turn profoundly affects lateralized sensory processing, and ultimately lateralized cognitive processes, decision-making, or behavioral control.

 

Letzner S, Manns M, Güntürkün O. Light-dependent development of the tectorotundal projection in pigeons. Eur J Neurosci. 2020 Sep;52(6):3561-3571. doi: 10.1111/ejn.14775. https://onlinelibrary.wiley.com/doi/10.1111/ejn.14775

News & Views

A cortex-like canonical circuit in the bird brain

...For more than a century, the avian forebrain has been a riddle for neuroscientists. Birds demonstrate exceptional cognitive abilities comparable to those of mammals, but their forebrain organization is radically different. Whereas mammalian cognition emerges from the canonical circuits of the six-layered neocortex, the avian forebrain seems to display a simple nuclear organization. Now, a new study headed by biopsychologists from Bochum, reveals a hitherto unknown neuroarchitecture of the avian sensory forebrain that is composed of iteratively organized cortex-like canonical circuits. This finding suggests that today’s birds and mammals use a partly modified ancient microcircuit of their last common ancestor. The avian version of this connectivity blueprint could conceivably generate computational properties akin to neocortex and would thus provide a neurobiological explanation for the comparable and outstanding perceptual and cognitive feats of both taxa.


Stacho, M., Herold, C., Rook, N., Wagner, H., Axer, M., Amunts, K., Güntürkün, O., A cortex-like canonical circuit in the avian forebrain, Science, 2020, 369: eabc5534, DOI: 10.1126/science.abc5534.

News & Views

How to classify neocortical cell types

Neocortical neurons come in bewildering shapes and functions. Since more than a century neuroscientists have proposed hundreds of ways how to classify them, resulting in a jungle of contradictory nomenclatures. Now, 72 neuroscientists assembled in Copenhagen and proposed to start anew by classifying neocortical neurons based on single-cell transcriptomics that holds the promise of being complete, accurate, and suited to incorporate data from different approaches, developmental stages and species. Such a community-based classification could provide a common foundation for the study of cortical circuits.

...

Yuste, R., Hawrylycz, M., Aalling, N., Aguilar-Valles, A., Arendt, D., Arnedillo, R. A., Ascoli, G. A., Bielza, C., Bokharaie, V., Bergmann, T. B., Bystron, I., Capogna, M., Chang, Y., Clemens, A., de Kock, C. P. J., DeFelipe, J., Dos Santos, S. E., Dunville, K., Feldmeyer, D., Fiáth, R., Fishell,G. J., Foggetti, A., Gao, X., Ghaderi, P., Goriounova, N. A., Güntürkün, O., Hagihara, K., Hall, V. J., Helmstaedter, M., Herculano, S., Hilscher, M. M., Hirase, H., Hjerling-Leffler, J., Hodge, R., Huang, J., Huda, R., Khodosevich, K., Kiehn, O., Koch, H., Kuebler, E. S., Kühnemund, M., Larrañaga, P., Lelieveldt, B., Louth, E. L., Lui, J. H., Mansvelder, H. D., Marin, O., Martinez-Trujillo, J., Chameh, H. M., Nath, A., Nedergaard, M., Němec, P., Ofer, N., Pfisterer, U. G., Pontes, S., Redmond, W., Rossier, J., Sanes, J. R., Scheuermann, R., Serrano-Saiz, E., Steiger, J. F., Somogyi, P. S., Tamás, G., Tolias, A. S., Tosches, M. A., García, M. T., Vieira, H. M., Wozny, C., Wuttke, T. V., Yong, L., Yuan, J., Zeng H. and Lein, E., A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neurosci., 2020, https://doi.org/10.1038/s41593-020-0685-8.


News & Views

Watching a bird brain at work

...It is a long-time dream of avian neuroscientists to see the pattern of activity in a bird brain while the animal is working on a task. Now, biopsychologists and further colleagues from Bochum established an fMRI platform to investigate visually guided decision-making in awake behaving pigeons. Pigeons discriminated colors in a Go/NoGo paradigm and used their beak opening movements to signal their acceptance or rejection of the stimulus. This approach opens the door to visualize the neural fundaments of perceptual and cognitive functions in birds—a vertebrate class of which some clades are cognitively on par with primates.

 

Behroozi, M., Helluy, X., Ströckens, F., Meng, G., Pusch, R., Tabrik, S., Tegenthoff, M., Otto, T., Axmacher, N., Kumsta, R., Moser, D., Genc, E. and Güntürkün, O. (2020). Event-Related functional MRI in awake behaving pigeons. Nature Communications. 11, 4715. https://doi.org/10.1038/s41467-020-18437-1

News & Views Archive

See older News & Views